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1. INTRODUCTION

The California State Lands Commission would like to understand the impact of climate change on
the scouring potential of a proposed fiber optic cable that will be buried 3 to 6 feet below the San
Francisco Bay bed. An analysis was performed at two critical points along the cable route,
specifically near the two shallow regions at the ends of the cable route: near Brisbane on the east
and San Leandro on the west. Two approaches were used: an evidence-based approach, and a
model-based approach.

The previous field studies conducted during the cable route planning related to sediment bed
characterization and near-bed current velocities were used to understand the baseline (current
conditions) scouring potential for a buried cable. In addition to the measured velocities, some of
the extreme events that occurred historically in the region and associated estimation of near-bed
velocities were examined for any exacerbation of sediment scouring at the two critical locations.

The same methodology was then applied for evaluating the effect of climate change on projected
wind speeds and associated currents and wave-induced near-bed velocities on the change in the
scouring potential. A business-as-usual worst-case climate scenario was used to obtain the
relevant variables needed for this study.

The sediment scouring analysis was performed for the present conditions and the future year
2050. Projected currents and wave fields for SF Bay were identified from USGS COSMOS
(Coastal Storm Modeling System) SF Bay model'. Wave fields for historical storm frequencies of
1, 20 and 100 years were identified from OCOF (“Our Coast Our Future”) web tool?.

2. METHODOLOGY

The study area is provided in Figure 1, showing the planned cable route across San Francisco
Bay and the east and west critical locations where this study was focused.

1 Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain - O'Neill
- 2017 - Earth and Space Science - Wiley Online Library

2 Hazard Map — Our Coast, Our Future (ourcoastourfuture.org)
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Figure 1: Study Area
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3. EVIDENCE-BASED APPROACH
3.1 Review of Historic Bathymetric Surveys in South Bay

According to U.S. Geological Survey analyses of San Francisco Bay (Jaffe and Foxgrover 20062
and 2006°), between 1956 to 2005 there was a net erosion in the eastern shore’s shallow area
(i.e. region less than 1 meter deep) in the section north of Dumbarton Bridge where the cable
route is planned. Erosion decreased from 1983 to 2005 during a period of net deposition in areas
within the center of the bay, and along the ship channel, possibly due to increased sediment loads
from the Central Bay area. On the eastern end of the cable route, there was some loss of intertidal
mud flats between 1956 and 1983, in addition to the construction of docks and expansion of the
Oakland International Airport. The coastal morphology between 1956 and 2005 remained the
same with some additional loss of mud flats. However, the shoreline south of the cable route did
shift eastward over time, making the coastline’s profile more smooth (See Figures 2 to 5).
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Figure 2: San Francisco Bay Sedimentation 1956, 1983, and 2005
Based on Jaffe and Foxgrover 2006°
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Figure 3: San Francisco Bay Bathymetry 1956, 1983, and 2005
Based on Jaffe and Foxgrover 20062
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Figure 4: East San Francisco Bay Bathymetry 1956, 1983, and 2005
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Figure 5: West San Francisco Bay Bathymetry 1956 and 1983
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The bathymetry of the South Bay mostly changed in the ship channel and along the coastlines.
The 6 ft contour line extent mostly remains stable based on Figures 2 to 6. This means if there is
any buried cable 3 ft to 6 ft below the bay sediment bed near the west and east ends it will not be
subjected to any type of extreme erosion that exposes the buried cable. From 1956 to 2005, the
bay bed near the shoreline seems to be stable despite various types of storm events that
happened during the period 1956 to 2005.

The intertidal flat changes are shown in Figure 6. Near the west and east ends of the proposed
cable route, there is no intertidal flat loss or gain.

Figure 6: Study Area Overlaid on the Intertidal Flat Changes Map
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3.2 Overview of Sediment Transport in the San Francisco Bay

ERM reviewed a technical paper published in Science Direct by Barnard et al., 2013 to get an
understanding of sediment transport in the San Francisco Bay. According to this paper, while most
other regions of the bay lost sediments, South Bay gained sediments of about 11 million m3
during the period 1983-2005 (See Figure 7). The historical sources of sediments in the Bay are:

1) Load from the Delta (Sacramento and San Joaquin Rivers)

2) Reduced sediment load due to the construction of dams, reservoirs, flood control,
stream bank protection, and shoreline armoring due to the late 1800s gold rush

3) Delta modifications due to reduced suspended sediments, sediment removal due to
dredging and bay fill due to subsidence and sea level rise

The following factors affect sediment transport in the Bay.
1) Wet and dry season variability

2) Freshwater inflow annual variability
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3) Seasonal wind strength variability

Figure 7: Sediment losses/gains in the San Francisco Bay
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The current conditions in the South Bay that affect sediment transport include:
e Spring tidal currents are typically 0.4 m/s on the shoals

e Strong winds are typical of summer sea breezes and winter storms (~16 mph), generating
waves and sediment resuspension

¢ Bottom currents are slower than the other parts of the Bay
e Wind waves are important for cohesive sediment resuspension on shoals
e Large sediment fluxes occur from a combination of wind waves and tidal currents

e Both the east and west ends of the cable route did not show strong evidence of historical
coastal area erosion or deposition

With Climate Change
¢ Increase the frequency of extreme water level events
e Cause higher precipitation peaks earlier in the season, weaker snow-melt

e Impact circulation patterns
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e Shift peak sediment loads earlier in the year
e Increase the frequency of coastal flooding events
e Decline in suspended sediment concentration

o Wetlands will need more sediment load to compete with sea level rise

3.3 Cohesive Sediment Erosion Study in South Bay

A team of scientists from Stanford University and Integral Consulting (Egan et al. 2020) conducted
a field study in the South Bay to understand the mechanisms driving cohesive sediment erosion
due to the combined effect of waves and currents in a shallow region. The study locations are
shown in Figure 8.

Figure 8: Study Locations
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The depths at P1 and P2 are 1.5 m and 0.5 m, respectively, which are similar to the depths we
find in the west and ends of the proposed cable route. The study involved three 4-week periods:

e July 17, 2018 — August 15, 2018 (summer deployment)
e January 10, 2019 — February 7, 2019; (winter deployment)
e April 17, 2019 — May 15, 2019 (spring deployment)

A one week period time series of data plotted in Figure 9 shows the variation of orbital velocities in
the order of 5 to 30 cm/sec resulting in both erosion and deposition with a +/- 0.5 cm change in the
bed level.
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Figure 9: Seven-day time series during the spring deployment showing Vectrino
measurements of (a) the bottom wave-orbital velocity, us, (b) the erosive sediment flux
magnitude of the fluctuating bed level, |E|, (c) the changes in the bed level thickness, z»
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The critical cohesive shear stress measurements shown in Table 1 vary for different seasons and
locations which affects the erosion potential. The term r? refers to the least square fit between
sedflume and field data measurements.

Table 1: Critical Cohesive Erosion Stress (Pa)

Critical Erosion Shear Stress (Pa)
(r? in parentheses)
Location Summer Winter Spring
P1 1.4 (0.54) 0.79 (0.64)
P2 9.04 (0.02) 0.16 (0.33) 0.3 (0.10)
Vec 0.45 (0.30) 0.15 (0.35)

The study concluded that waves effectively erode sediments into a thin region near the bed,
allowing tidal currents to distribute the sediments through the rest of the water column in shallow
regions. However, cycles of erosion and deposition happen to result in minimal bed level changes
and do not lead to continuous erosion leading to scouring.

4. MODEL-BASED APPROACH

A sediment transport model, Sedtrans05, was applied to examine the potential changes in
sediment transport at the two critical end locations on the cable route.

Sedtrans05 (Neumeier et al., 2008) provides computations to estimate sediment transport of both
cohesive and non-cohesive sediments as a function of currents, weaves, water depth, and
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sediment type. The Cohesive Sediment Algorithm (CSA) in the model is appropriate for water with
salinity above 10 to 15 ppt. However, the CSA does not include movement due to biological
processes such as bioturbation, lateral movement of fluid mud, the resuspension of fluid mud by
waves, or the effects of Holmboe waves at the water-sediment interface.

4.1 Model Inputs

Model inputs gathered for this analysis included San Francisco Bay currents, salinity, water
temperature, wave data, and sediment characteristics.

411 Waves and Currents

Waves and currents were measured (A2Sea 2022) in the deeper section of the proposed route
using by Acoustic Doppler Current Profiler (ADCP) at a location shown in Figure 10. Waves and
currents were measured from July 20, 2022 through August 24, 2022. Wave information was
recorded every 40 minutes, while current speeds and directions were recorded every 10 minutes.
Statistical analysis of currents and waves were performed to understand the current and wave
characteristics near the proposed route. Figure 11 shows tidal currents are predominately in the
northwest and southeast direction. Figure 11 also shows the plots of wave height with wave period
and wave direction. Large wave heights in the range of 10 to 70 cm have wave periods in the
range of 3 to 6 secs while small wave heights in the range of 1 to 2 cm have wave periods in the
range of 12 to 30 secs. Wave heights are distributed across all directions at the proposed route.
Currents and waves obtained from field measurements were measured at a deeper location in the
Bay and hence they were downscaled to represent currents and waves in the east and west ends
using COSMOS model results (See Table 3 and Table 4).

Figure 10: ADCP Location
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Figure 11: Currents and Waves at the Proposed Route

The percent occurrence in a day of various wave heights is shown in Table 2.

Table 2: Percent Occurrence in a Day of Various Wave Heights

Wave Height Bins (m) % Occurrence in a Day
0.0-0.1 37
0.1-0.2 7
0.2-03 17
0.3-04 17
04-0.5 12
0.5-0.6 7
0.6-0.7 2
0.7-0.8 0

Table 2 shows that 44% of the time, wave heights are less than 20 cm while 46% of the time wave
heights are between 20 to 50 cm. Wave heights > 50 cm occur 10% of the time in a day. This
clearly shows while larger wave heights can cause erosion, smaller wave heights promote
deposition.

The waves and currents statistics for current conditions and the future year 2050 are shown in
Table 3 and Table 4, respectively.
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Climate change wave heights and currents were obtained from COSMOS3. Annual storm
frequency results in Table 3 show that the maximum wave heights at the west end, east end, and
field measurement locations along the cable route increase by about 7%,1% and 4%, respectively.
Similarly, annual storm frequency results in Table 4 show the maximum currents at the west end,
east end, and field measurement locations along the cable route by about 1%, 8% and 1%,

3 Hazard Map — Our Coast, Our Future (ourcoastourfuture.org)



https://ourcoastourfuture.org/hazard-map/

ERM 1 March 2023
ERM Project #0623691: Bandwidth
IG, LLC San Francisco Bay
Page 11 of 12

respectively. Another study by O’Neill (2017) on downscaling of wind and wavefields for
21st-century coastal flood hazard projections in the San Francisco Bay shows that there is not
much variation in the maximum and average wave heights in the South Bay between the period
1975-2004 and 2010-2100 (See Table 5). This means climate change shows a minimal change in
the wave heights and currents in the South Bay and should not exacerbate erosion along the
proposed route.

Table 5: Climate Change Projects (O’Neil 2017)

Time Period Maximum Wave Height (m) Average Wave Height (m)
1975 — 2004 1.05 0.57
2010 - 2100 1.04 0.55

4.1.2 Sediment Characteristics

Bed Characterization along the cable route (A2Sea 2022) is shown in Figure 12. The sediment
bed type at the west end is clay while it is clay/sand type at the east end. The sediment grain size
information was obtained from a sediment core study conducted in the South Bay by USGS
(Woodrow et al. 2014). The sediment core locations are shown in Figure 13. The sediment core
information at Sample ID 151 shown in Figure 13 was selected since it is inside the 6 ft contour
line that can represent the bed conditions at both the east and west ends. A mass-weighted
average of sediment samples that had only clay shown in Table 6 was used to estimate the grain
particle size as 1.96131e-06 m (approximately 2 microns). The critical cohesive bed shear stress
was obtained from values presented in Table 1. The bottom roughness was obtained from Egan et
al. (2020).

Figure 12: Bed Characterization along the Proposed Cable Route
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Figure 13: Sediment Core Sample ID 151
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Table 6: Sediment Grain Sizes for Clay Material at Sample ID 151
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4.2 Model Analysis

The sedtrans05 model was run for the period 07/16/2022 to 08/22/2022 using the currents (speed
and direction) and wave data (wave height, wave period and wave direction) along with sediment
bed input parameters described in Section 4.1. Current speeds and wave heights are shown in
Figure 13 and currents direction and waves direction are shown in Figure 14. The model-predicted
bed level change is shown in Figure 15. Positive values of bed level change represent erosion
while the negative values represent deposition. This figure clearly shows cycles of erosion and
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deposition during the period of the simulation. The bed level change is also in the same range as
the field measurements results shown in Section 3.3. The effective bed shear stress due to the
combined action of waves and currents is shown in Figure 15. The bed shear stress varies greater
than the critical cohesive shear stress of 2 Pa resulting in erosion based on the field
measurements described in Section 3.3.

For various current speeds and directions, erosion increases with wave heights in shallow water.
For larger wave heights > 0.25 m, erosion results in a decrease in the bed level in the range of 2
to 5 cm. For smaller wave heights in the range of 0.1 to 0.25 m, deposition of sediments results in
the increase of bed level in the range of 2 to 5 cm depending on the availability of suspended
sediments. Due to the oscillatory nature of waves at any specific location, cycles of erosion and
deposition happen depending on the change in the wave amplitude at a specific location. Field
measurements on wave data show that on approximately 45% of any typical day, the wave
heights are < 0.2 m, 46% of any typical day it is in the range of 0.2 to 0.5 m and on 9% of any
typical day itis > 0.5 m.

Figure 14: Currents and Waves Obtained from Field Measurements and Downscaled to East
and West Ends using COSMOS
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Figure 15: Current and Wave Directions Obtained from Field Measurements
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Figure 16: Bed Level Change due to Combined Wave and Current Interaction on the
Erosion / Deposition
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Figure 17: Effective Hydrodynamic Bed Shear Stress due to the Combined Action of
Currents and Waves
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5. CONCLUSIONS

Based on historic bathymetric surveys, the 6 ft contour line is very stable both at the east and west
ends of the proposed fiber optic cable route which indicates that there is not much erosion
happening in the nearshore area of the South Bay. This supports the decision that a buried cable
at 3 ft to 6 ft will not result in scouring and exposure of the buried cable.

A recent study a few kilometers south of the proposed cable route in a shallow water depth of
1.5 m shows that the combined effect of winds and currents results in bursts of erosion in which
sediments get carried away by the tidal currents in the water column.

However, the field study also showed cycles of erosion and deposition bursts resulting in small
oscillations in the bed level (changing up or down by a few centimeters).

A simplified sediment transport analysis performed using the Sedtrans05 tool also shows periods
of erosion and deposition with erosion increasing with wave heights. Deposition depends on the
availability of total suspended sediments in the water column from both freshly eroded mass as
well as coming from other regions.
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There is a small incremental / decremental change in the wave heights and currents for the year
2050 due to climate change and this should not exacerbate erosion or deposition processes.

Based on the analysis ERM anticipates that will not be any significant scour/erosion to expose

the buried cable based on current or climate change scenarios over a 30 yr timeline
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Introduction

The California State Lands Commission would like to understand the impact of climate change on the scouring potential of a proposed fiber optic cable that will be buried 3 to 6 feet below the San Francisco Bay bed. An analysis was performed at two critical points along the cable route, specifically near the two shallow regions at the ends of the cable route: near Brisbane on the east and San Leandro on the west. Two approaches were used: an evidence-based approach, and a model-based approach.

The previous field studies conducted during the cable route planning related to sediment bed characterization and near-bed current velocities were used to understand the baseline (current conditions) scouring potential for a buried cable. In addition to the measured velocities, some of the extreme events that occurred historically in the region and associated estimation of near-bed velocities were examined for any exacerbation of sediment scouring at the two critical locations.

The same methodology was then applied for evaluating the effect of climate change on projected wind speeds and associated currents and wave-induced near-bed velocities on the change in the scouring potential. A business-as-usual worst-case climate scenario was used to obtain the relevant variables needed for this study. 

The sediment scouring analysis was performed for the present conditions and the future year 2050. Projected currents and wave fields for SF Bay were identified from USGS COSMOS (Coastal Storm Modeling System) SF Bay model[footnoteRef:1]. Wave fields for historical storm frequencies of 1, 20 and 100 years were identified from OCOF (“Our Coast Our Future”) web tool[footnoteRef:2]. [1:  Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain - O'Neill - 2017 - Earth and Space Science - Wiley Online Library]  [2:  Hazard Map – Our Coast, Our Future (ourcoastourfuture.org)] 


Methodology

The study area is provided in Figure 1, showing the planned cable route across San Francisco Bay and the east and west critical locations where this study was focused. 

[bookmark: _Toc131003417]Figure 1: Study Area

[image: This figure shows the cable route as a yellow line crossing San Francisco Bay from the west end on the left to the east side on the right.]

Evidence-Based Approach

Review of Historic Bathymetric Surveys in South Bay

According to U.S. Geological Survey analyses of San Francisco Bay (Jaffe and Foxgrover 2006a and 2006b), between 1956 to 2005 there was a net erosion in the eastern shore’s shallow area (i.e. region less than 1 meter deep) in the section north of Dumbarton Bridge where the cable route is planned. Erosion decreased from 1983 to 2005 during a period of net deposition in areas within the center of the bay, and along the ship channel, possibly due to increased sediment loads from the Central Bay area. On the eastern end of the cable route, there was some loss of intertidal mud flats between 1956 and 1983, in addition to the construction of docks and expansion of the Oakland International Airport. The coastal morphology between 1956 and 2005 remained the same with some additional loss of mud flats. However, the shoreline south of the cable route did shift eastward over time, making the coastline’s profile more smooth (See Figures 2 to 5).

[bookmark: _Toc131003418]Figure 2: San Francisco Bay Sedimentation 1956, 1983, and 2005
Based on Jaffe and Foxgrover 2006b

[image: This figure shows San Francisco Bay on the left showing sedimentation from nineteen fifty six to nineteen eighty three and on the right from that year to two thousand five. The cable route is a U shaped yellow line in the wide portion of the bay.]

[bookmark: _Toc131003419]Figure 3: San Francisco Bay Bathymetry 1956, 1983, and 2005
Based on Jaffe and Foxgrover 2006a

[image: This figure shows three bathymetry surveys in nineteen fifty six,  nineteen eighty three, and two thousand five with the cable route as an orange line.]

[bookmark: _Toc131003420]Figure 4: East San Francisco Bay Bathymetry 1956, 1983, and 2005 

Based on Jaffe and Foxgrover 2006a

[image: This figure shows three east end bathymetry surveys in nineteen fifty six,  nineteen eighty three, and two thousand five with the cable route as an orange line. The second and third figures show intertidal flat loss at shoreward edge shown as brown.]

[bookmark: _Toc131003421]Figure 5: West San Francisco Bay Bathymetry 1956 and 1983
Based on Jaffe and Foxgrover 2006a

[image: This figure shows two west end bathymetry surveys in nineteen fifty six and nineteen eighty three. The second figure shows the shoreline modified by construction. The cable route is and orange line from bottom right to left middle. ]

The bathymetry of the South Bay mostly changed in the ship channel and along the coastlines. The 6 ft contour line extent mostly remains stable based on Figures 2 to 6. This means if there is any buried cable 3 ft to 6 ft below the bay sediment bed near the west and east ends it will not be subjected to any type of extreme erosion that exposes the buried cable. From 1956 to 2005, the bay bed near the shoreline seems to be stable despite various types of storm events that happened during the period 1956 to 2005.

The intertidal flat changes are shown in Figure 6. Near the west and east ends of the proposed cable route, there is no intertidal flat loss or gain.

[bookmark: _Toc131003422]Figure 6: Study Area Overlaid on the Intertidal Flat Changes Map

Based on Jaffe and Foxgrover 2006a

[image: This figure shows the orange cable route, red shoreward edge intertidal flat loss, green shoreward edge intertidal flat gain with the inset showing the east end cable route. Loss was eight point eight square kilometers, and gain was six point seven.]

Overview of Sediment Transport in the San Francisco Bay

ERM reviewed a technical paper published in Science Direct by Barnard et al., 2013 to get an understanding of sediment transport in the San Francisco Bay. According to this paper, while most other regions of the bay lost sediments, South Bay gained sediments of about 11 million m3 during the period 1983-2005 (See Figure 7). The historical sources of sediments in the Bay are:

1) Load from the Delta (Sacramento and San Joaquin Rivers)

2) Reduced sediment load due to the construction of dams, reservoirs, flood control, stream bank protection, and shoreline armoring due to the late 1800s gold rush

3) Delta modifications due to reduced suspended sediments, sediment removal due to dredging and bay fill due to subsidence and sea level rise

The following factors affect sediment transport in the Bay.

1) Wet and dry season variability

2) Freshwater inflow annual variability

3) Seasonal wind strength variability

[bookmark: _Toc131003423]Figure 7: Sediment losses/gains in the San Francisco Bay

[image: This figure shows sediment losses and gains in areas of the bay with losses ranging from ninety two million to fourteen million cubic meters. Gain in the south bay was eleven million cubic meters.]

The current conditions in the South Bay that affect sediment transport include:

· Spring tidal currents are typically 0.4 m/s on the shoals

· Strong winds are typical of summer sea breezes and winter storms (~16 mph), generating waves and sediment resuspension

· Bottom currents are slower than the other parts of the Bay

· Wind waves are important for cohesive sediment resuspension on shoals

· Large sediment fluxes occur from a combination of wind waves and tidal currents

· Both the east and west ends of the cable route did not show strong evidence of historical coastal area erosion or deposition

With Climate Change

· Increase the frequency of extreme water level events

· Cause higher precipitation peaks earlier in the season, weaker snow-melt

· Impact circulation patterns

· Shift peak sediment loads earlier in the year

· Increase the frequency of coastal flooding events

· Decline in suspended sediment concentration

· Wetlands will need more sediment load to compete with sea level rise

Cohesive Sediment Erosion Study in South Bay

A team of scientists from Stanford University and Integral Consulting (Egan et al. 2020) conducted a field study in the South Bay to understand the mechanisms driving cohesive sediment erosion due to the combined effect of waves and currents in a shallow region. The study locations are shown in Figure 8.

[bookmark: _Toc131003424]Figure 8: Study Locations

[image: This figure shows the orange cable route with the inset panel on the right showing five study locations in the south bay. ]

The depths at P1 and P2 are 1.5 m and 0.5 m, respectively, which are similar to the depths we find in the west and ends of the proposed cable route. The study involved three 4-week periods:

· July 17, 2018 – August 15, 2018 (summer deployment)

· January 10, 2019 – February 7, 2019; (winter deployment)

· April 17, 2019 – May 15, 2019 (spring deployment)

A one week period time series of data plotted in Figure 9 shows the variation of orbital velocities in the order of 5 to 30 cm/sec resulting in both erosion and deposition with a +/- 0.5 cm change in the bed level. 

[bookmark: _Toc131003425]Figure 9: Seven-day time series during the spring deployment showing Vectrino measurements of (a) the bottom wave-orbital velocity, ub, (b) the erosive sediment flux magnitude of the fluctuating bed level, |E|, (c) the changes in the bed level thickness, zb

[image: This figure shows three charts of a seven day time series with a line graph. The top one shows bottom wave orbital velocity, the middle is erosive sediment flux magnitude, and the bottom shows changes in bed level thickness.]

The critical cohesive shear stress measurements shown in Table 1 vary for different seasons and locations which affects the erosion potential. The term r2 refers to the least square fit between sedflume and field data measurements.

[bookmark: _Toc131003576]Table 1: Critical Cohesive Erosion Stress (Pa)

		

		Critical Erosion Shear Stress (Pa)
(r² in parentheses)



		Location

		Summer

		Winter

		Spring



		P1

		1.4 (0.54)

		

		0.79 (0.64)



		P2

		9.04 (0.02)

		0.16 (0.33)

		0.3 (0.10)



		Vec

		0.45 (0.30)

		

		0.15 (0.35)





The study concluded that waves effectively erode sediments into a thin region near the bed, allowing tidal currents to distribute the sediments through the rest of the water column in shallow regions. However, cycles of erosion and deposition happen to result in minimal bed level changes and do not lead to continuous erosion leading to scouring.

Model-Based Approach

A sediment transport model, Sedtrans05, was applied to examine the potential changes in sediment transport at the two critical end locations on the cable route.

Sedtrans05 (Neumeier et al., 2008) provides computations to estimate sediment transport of both cohesive and non-cohesive sediments as a function of currents, weaves, water depth, and sediment type. The Cohesive Sediment Algorithm (CSA) in the model is appropriate for water with salinity above 10 to 15 ppt. However, the CSA does not include movement due to biological processes such as bioturbation, lateral movement of fluid mud, the resuspension of fluid mud by waves, or the effects of Holmboe waves at the water-sediment interface.

Model Inputs

Model inputs gathered for this analysis included San Francisco Bay currents, salinity, water temperature, wave data, and sediment characteristics.

Waves and Currents

Waves and currents were measured (A2Sea 2022) in the deeper section of the proposed route using by Acoustic Doppler Current Profiler (ADCP) at a location shown in Figure 10. Waves and currents were measured from July 20, 2022 through August 24, 2022. Wave information was recorded every 40 minutes, while current speeds and directions were recorded every 10 minutes. Statistical analysis of currents and waves were performed to understand the current and wave characteristics near the proposed route. Figure 11 shows tidal currents are predominately in the northwest and southeast direction. Figure 11 also shows the plots of wave height with wave period and wave direction. Large wave heights in the range of 10 to 70 cm have wave periods in the range of 3 to 6 secs while small wave heights in the range of 1 to 2 cm have wave periods in the range of 12 to 30 secs. Wave heights are distributed across all directions at the proposed route. Currents and waves obtained from field measurements were measured at a deeper location in the Bay and hence they were downscaled to represent currents and waves in the east and west ends using COSMOS model results (See Table 3 and Table 4).

[bookmark: _Toc131003426]Figure 10: ADCP Location

[image: This figure shows the purple U shaped cable route with a yellow circle in the lower left along the route showing the Acoustic Doppler Current Profiler location. ]

[bookmark: _Toc131003427]
Figure 11: Currents and Waves at the Proposed Route

[image: The left figure shows tidal currents in the northwest to southeast direction. Top right shows wave height plots with wave period and wave direction. Large wave heights range from 10 to 70 centimeters with wave periods of 3 to 6 seconds]

The percent occurrence in a day of various wave heights is shown in Table 2.

[bookmark: _Toc131003577]Table 2: Percent Occurrence in a Day of Various Wave Heights

		Wave Height Bins (m)

		% Occurrence in a Day



		0.0 – 0.1

		37



		0.1 – 0.2

		7



		0.2 – 0.3

		17



		0.3 – 0.4

		17



		0.4 – 0.5

		12



		0.5 – 0.6

		7



		0.6 – 0.7

		2



		0.7 – 0.8

		0





Table 2 shows that 44% of the time, wave heights are less than 20 cm while 46% of the time wave heights are between 20 to 50 cm. Wave heights > 50 cm occur 10% of the time in a day. This clearly shows while larger wave heights can cause erosion, smaller wave heights promote deposition.

The waves and currents statistics for current conditions and the future year 2050 are shown in Table 3 and Table 4, respectively.

[bookmark: _Toc131003578]Table 3: Currents

[image: This table shows the measurement locations of ADCP, left and right shorelines for surface, mid depth, near and at the bottom. Future predictions are for SLR, annual, twenty year and one hundred year currents in meters per second.]

[bookmark: _Toc131003579]Table 4: Waves

[image: This table shows the measurement locations of ADCP, left and right shorelines for wave heights, peak and mean periods, and mean direction. Future predictions are for SLR, annual, twenty year and one hundred year wave heights in meters.]

Climate change wave heights and currents were obtained from COSMOS[footnoteRef:3]. Annual storm frequency results in Table 3 show that the maximum wave heights at the west end, east end, and field measurement locations along the cable route increase by about 7%,1% and 4%, respectively. Similarly, annual storm frequency results in Table 4 show the maximum currents at the west end, east end, and field measurement locations along the cable route by about 1%, 8% and 1%, respectively. Another study by O’Neill (2017) on downscaling of wind and wavefields for
21st-century coastal flood hazard projections in the San Francisco Bay shows that there is not much variation in the maximum and average wave heights in the South Bay between the period 1975-2004 and 2010-2100 (See Table 5). This means climate change shows a minimal change in the wave heights and currents in the South Bay and should not exacerbate erosion along the proposed route. [3:  Hazard Map – Our Coast, Our Future (ourcoastourfuture.org)] 


[bookmark: _Toc131003580]Table 5: Climate Change Projects (O’Neil 2017)

		Time Period

		Maximum Wave Height (m)

		Average Wave Height (m)



		1975 – 2004

		1.05

		0.57



		2010 - 2100

		1.04

		0.55





Sediment Characteristics

Bed Characterization along the cable route (A2Sea 2022) is shown in Figure 12. The sediment bed type at the west end is clay while it is clay/sand type at the east end. The sediment grain size information was obtained from a sediment core study conducted in the South Bay by USGS (Woodrow et al. 2014). The sediment core locations are shown in Figure 13. The sediment core information at Sample ID 151 shown in Figure 13 was selected since it is inside the 6 ft contour line that can represent the bed conditions at both the east and west ends. A mass-weighted average of sediment samples that had only clay shown in Table 6 was used to estimate the grain particle size as 1.96131e-06 m (approximately 2 microns). The critical cohesive bed shear stress was obtained from values presented in Table 1. The bottom roughness was obtained from Egan et al. (2020). 

[bookmark: _Toc131003428]Figure 12: Bed Characterization along the Proposed Cable Route

[image: This figure shows the sediments along the cable route with light green clay predominant on the west half, and dark green sand clay with shell predominant on the east half, with sandy clay nearer the east shore on the right.]

[bookmark: _Toc131003429]Figure 13: Sediment Core Sample ID 151

[image: The left pane in this figure shows the south bay with the San Mateo bridge as a brown line in the upper left. The sediment core sample locations are red dots. The right pane is a close up of the bridge area with Sample 151 at the far right.]

[bookmark: _Toc131003581]Table 6: Sediment Grain Sizes for Clay Material at Sample ID 151

[image: This table toward the bottom outlines in red the four depths of the 151 core sediment samples and shows the mass-weighted average grain sizes of those samples.]

Model Analysis

The sedtrans05 model was run for the period 07/16/2022 to 08/22/2022 using the currents (speed and direction) and wave data (wave height, wave period and wave direction) along with sediment bed input parameters described in Section 4.1. Current speeds and wave heights are shown in Figure 13 and currents direction and waves direction are shown in Figure 14. The model-predicted bed level change is shown in Figure 15.  Positive values of bed level change represent erosion while the negative values represent deposition. This figure clearly shows cycles of erosion and deposition during the period of the simulation. The bed level change is also in the same range as the field measurements results shown in Section 3.3. The effective bed shear stress due to the combined action of waves and currents is shown in Figure 15. The bed shear stress varies greater than the critical cohesive shear stress of 2 Pa resulting in erosion based on the field measurements described in Section 3.3.

For various current speeds and directions, erosion increases with wave heights in shallow water. For larger wave heights > 0.25 m, erosion results in a decrease in the bed level in the range of 2 to 5 cm. For smaller wave heights in the range of 0.1 to 0.25 m, deposition of sediments results in the increase of bed level in the range of 2 to 5 cm depending on the availability of suspended sediments. Due to the oscillatory nature of waves at any specific location, cycles of erosion and deposition happen depending on the change in the wave amplitude at a specific location. Field measurements on wave data show that on approximately 45% of any typical day, the wave heights are < 0.2 m, 46% of any typical day it is in the range of 0.2 to 0.5 m and on 9% of any typical day it is > 0.5 m.

[bookmark: _Toc131003430]Figure 14: Currents and Waves Obtained from Field Measurements and Downscaled to East and West Ends using COSMOS

[image: This figure is a line graph with current speed on the left axis, wave height on the right, and dates on the x axis. The blue line is the current speed and the orange line is the wave height.]

[bookmark: _Toc131003431]Figure 15: Current and Wave Directions Obtained from Field Measurements

[image: This figure is a line graph with current direction on the left axis, wave direction on the right, and dates on the x axis. The blue line is the wind and the orange line is the current.]

[bookmark: _Toc131003432]Figure 16: Bed Level Change due to Combined Wave and Current Interaction on the Erosion / Deposition

[image: This figure is a line graph with bed change in meters on the left axis, and dates on the x axis. The blue line is total suspended solids at fifty milligrams per liter, and the gray line is total suspended solids at ten milligrams per liter.]

[bookmark: _Toc131003433]Figure 17: Effective Hydrodynamic Bed Shear Stress due to the Combined Action of Currents and Waves

[image: This figure is a line graph with effective bed sheer stress on the left axis, and dates on the x axis. The blue line is total suspended solids at fifty milligrams per liter, and the gray line is total suspended solids at ten milligrams per liter.]

Conclusions

Based on historic bathymetric surveys, the 6 ft contour line is very stable both at the east and west ends of the proposed fiber optic cable route which indicates that there is not much erosion happening in the nearshore area of the South Bay. This supports the decision that a buried cable at 3 ft to 6 ft will not result in scouring and exposure of the buried cable.

A recent study a few kilometers south of the proposed cable route in a shallow water depth of 1.5 m shows that the combined effect of winds and currents results in bursts of erosion in which sediments get carried away by the tidal currents in the water column. 

However, the field study also showed cycles of erosion and deposition bursts resulting in small oscillations in the bed level (changing up or down by a few centimeters).

A simplified sediment transport analysis performed using the Sedtrans05 tool also shows periods of erosion and deposition with erosion increasing with wave heights. Deposition depends on the availability of total suspended sediments in the water column from both freshly eroded mass as well as coming from other regions.

There is a small incremental / decremental change in the wave heights and currents for the year 2050 due to climate change and this should not exacerbate erosion or deposition processes.

[image: ]
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Based on the analysis ERM anticipates that will not be any significant scour/erosion to expose
the buried cable based on current or climate change scenarios over a 30 yr timeline
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