HAZARDOUS MATERIALS MANAGEMENT AND CONTINGENCY PLAN

CALIFORNIA RESOURCES CORPORATION (CRC) DECOMMISSIONING OF THE GRUBB LEASE (PRC 3913.1) INTAKE/OUTFALL STRUCTURE VENTURA COUNTY, CALIFORNIA

Prepared for:

California Resources Corporation 900 Old River Blvd. Bakersfield, CA 93311

Prepared by:

DECEMBER 2019

TABLE OF CONTENTS

Page

1.0	INTR	ODUCTION	1
	1.1	PROJECT LOCATION AND OVERVIEW	1
	1.2	PROJECT BACKGROUND	3
		1.2.1 Offshore Intake and Outfall Pipelines	3
		1.2.2 Shoreline Vault	4
		1.2.3 Onshore Pipelines	5
2.0	PRE-	PROJECT SITE INVESTIGATIONS	6
	2.1	VAULT STANDING WATER	6
	2.2	LEAD AND ASBESTOS	6
3.0	PRO	JECT-RELATED WASTES/HAZARDOUS MATERIALS	7
	3.1	ONSHORE VAULT DEMOLITION	7
	3.2	PIPELINE REMOVAL	7
	3.3	CONSTRUCTION EQUIPMENT AND REFUELING	8
4.0	WAS	TE MANAGEMENT	9
	4.1	VAULT PURGE WATER/EQUIPMENT	9
	4.2	PIPELINES	9
	4.3	LEAD-BASED PAINT (LBP) MATERIALS (IF FOUND)	9
5.0	REPO	DRTING	10
6.0	REFE	RENCES	11

LIST OF TABLES

	Table 1-1.	Project W	ork Segments	Summary	1
--	------------	-----------	--------------	---------	---

LIST OF FIGURES

Figure 1-1. Project Facilities Map	2	2
------------------------------------	---	---

ATTACHMENTS

Attachment 1 -	- Project	Execution	Plan	(PEP)	Longitude	123, 2019
----------------	-----------	-----------	------	-------	-----------	-----------

Attachment 2 – Oilfield Environmental and Compliance, Inc. Analytical Results (April 2019)

Intentionally blank page

1.0 INTRODUCTION

This Hazardous Materials Management and Contingency Plan (HMMCP) has been prepared for the proposed California Resources Corporation (CRC) Grubb Lease (PRC 3913.1) Intake/Outfall Structures Decommissioning Project in Ventura County, California (Project). The purpose of this HMMCP is to present an overview of the procedures and protocols that will be utilized during the Project to safely and appropriately recover, handle, characterize, store, transport and dispose of any contaminated materials identified during Project decommissioning activities.

1.1 PROJECT LOCATION AND OVERVIEW

The Project includes decommissioning of the Grubb Lease Outfall/Intake facilities located alongside Pacific Coast Highway approximately 792 feet northwest of Solimar Beach at the foot of the "A" Lease Canyon Road underpass (Figure 1-1 – Project Facilities Map). Project activities will occur within three primary areas as follows:

Segment	Description
Offshore Intake and Outfall Pipelines	The Offshore Intake and Outfall Pipelines Segment consists of three 12-inch-diameter steel submarine pipelines with two intake pipelines and one outfall pipeline. The two intake pipelines measure 680 and 630 feet in length. The outfall pipeline measures 500 feet in length. Each of the two intake pipelines has an approximately 6-foot by 6-foot by 1-foot reinforced concrete lattice box structure at the offshore end.
Shoreline Vault	The Shoreline Vault Segment consists of a shoreline vault that is a reinforced concrete and steel sheet pile structure set in the armor rock seawall between the Pacific Coast Highway (PCH) and the intertidal zone. The vault measures approximately 20 feet wide by 14 feet long and 27 feet deep. The entire 20-foot by 42- foot vault enclosure is surrounded by a chain link fence. The two intake pipelines and one outfall pipeline were originally connected to the seaward side of the vault. A 36-inch-diameter pipeline casing consisting of three pipelines exits the vault on the landward side of the vault. The vault contains water pumps, piping, two levels of grating, and other ancillary equipment.
Onshore Pipelines	The Onshore Pipelines Segment consists of a 36-inch-diameter steel casing containing one 14-inch-diameter steel pipeline, one 12-inch-diameter steel pipeline and one 8-inch-diameter polyvinyl chloride (PVC) pipe liner inside of a second 12-inch-diameter steel pipeline.

Table 1-1. Project Work Segments Summary	/
--	---

CRC – Decommissioning of Grubb Lease Intake/Outfall Structure Hazardous Materials Management and Contingency Plan December 2019

Figure 1-1. Project Facilities Map

The Project will require the following primary components:

- Pre-Project Preparation Activities and Surveys
 - Construction of a temporary equipment access ramp
- Removal of the Intake/Outfall facilities within PRC 3913.1 including:
 - Recovery of the 6-foot by 6-foot by 1-foot concrete lattice box structures at the offshore end of each of the intake pipelines
 - Recover of the two, 12-inch-diameter steel intake pipelines
 - o Recovery of the12-inch-diameter steel outfall pipeline
- Demolition and removal of existing concrete vault including:
 - Removal of outer sheet piles
 - Removal of all internal water pumps, piping, two levels of grating, and other ancillary equipment
- Abandon-in-place the 36-inch casing (and internal pipelines) on the onshore side of the beach vault, including:
 - Removal or grouting of internal pipeline segments
 - Fill the casing between the onshore side of the beach vault and valve box on CRC's lower Grubb lease property with slurry
- Ramp demolition and reconstruction of the armor rock seawall at the gap created by removal of the concrete vault
- Demobilization of equipment and disposal/recycling of recovered pipelines and appurtenant facility components (fencing, foundation piling, concrete)
- Post-Project survey to confirm removal of pipelines and any associated seafloor anomalies, as compared to the Pre-Project survey

1.2 PROJECT BACKGROUND

The Project facilities were originally constructed by Continental Oil in 1967. Occidental Petroleum (Oxy) acquired the Grubb lease in 2005 from Vintage Petroleum. On November 30, 2014, Oxy restructured its California operations, including the Grubb lease, into California Resources Corporation (CRC), an independent, publicly traded company.

The Grubb Lease intake/discharge facility was used to bring in seawater for oil-field related water flood operations and on occasion for discharge of the inlet seawater filter backwash to the ocean. According to operational records, the western (up coast pipeline) was the last of the three pipelines to be in use and was used as a seawater intake suction pipeline until Project facilities were idled in 2003 or 2005.

1.2.1 Offshore Intake and Outfall Pipelines

The offshore portion of the facility consists of three 12-inch-diameter steel submarine pipelines with two intake pipelines and one outfall pipeline. The Grubb lease intake/discharge facility was used to bring in seawater for oil-field related water flood operations and on occasion for discharge of the inlet seawater filter backwash to the ocean. Hydrocarbons were not present

in the backwash sent through the outfall. The two intake pipelines measure approximately 680 and 630 feet in length, and the outfall pipeline measures approximately 500 feet in length. All lengths are measured from the seaward side of the concrete vault to the offshore terminations of each pipeline, which are located in water depths ranging from 12 to 14 feet of water. The original materials specification and wall thickness of these pipelines are unknown. The pipelines appear to be coated with an external anti-corrosive coating or weight coating of unknown composition, but most likely a mastic filler/sealer. The external coatings would be sampled prior to removal and tested for the presence of any hazardous materials.

The shoreline consists of a narrow sand beach that is exposed during low tide events and inundated at high tide events. The beach is bordered on the northeast side by a steep armor rock covered slope. All three pipelines run southwest, spaced at approximately ten-degree increments from the vault structure on the beach. There are two reinforced concrete lattice box structures located on the seafloor at the offshore ends of the intake pipelines each measuring approximately 6 square feet and 1 foot in height. Both the pipelines and lattice box structures are gravity based and no anchoring system has been used to secure them to the seafloor.

All three pipelines are fully severed, as a result of corrosion, just south of the seaward side of the vault in the surf zone area. At the severance points all three pipelines appear to be double walled within an inner and outer wall of steel or plastic pipe and mastic filler between the walls. The seaward pipeline sections cross the shoreline just below the beach sand line and the remaining stubs north of the severance points enter the reinforced concrete vault above the sand line but below the high tide.

Offshore, the pipelines appear to be intact and buried through the surf zone. The length and depth of cover appears to vary with the season and associated annual sand migration. This approximately 200-foot long surf zone segment has not been surveyed due to the difficulties of working in the surf zone. Further offshore, the remaining 300 to 500 feet of pipe are exposed and laying on a bedrock and sand seafloor. The exposure of the pipelines was identified in a 2012 and 2019 geophysical survey and confirmed visually in a 2018 biological survey by divers (Fugro 2012, eTrac 2019, Padre 2018).

1.2.2 Shoreline Vault

The shoreline vault is a reinforced concrete and steel sheet pile structure set in the armor rock seawall between Pacific Coast Highway and the intertidal zone. The vault's seaward side is inaccessible during periods of high tide. The vault measures approximately 20 feet wide by 14 feet long and 27 feet deep. The two intake pipelines and one outfall pipeline were originally connected to the seaward side of this vault, and there are pipeline remnants within the armor rock seawall.

A 36-inch-diameter pipeline steel casing with three pipelines exits the vault on the north side (landward side). The vault interior is partially filled with water, at a depth of approximately 16 feet, and still contains water pumps, piping, two levels of grating, and other ancillary equipment, much of it submerged. The interior water level does not change with the tides and so appears to be isolated from the ocean. Due to the flooded condition, the vault interior has only been partially surveyed.

The vault is approximately 27 feet deep and terminates approximately 12 feet below the surrounding sand beach level. Large pumps and equipment appear to be fastened to the floor of the vault and the floor is assumed to be concrete. The interior vault walls and ceiling are concrete, and the exterior walls are sheathed with steel sheet pile. The northern wall of the vault is separated from Pacific Coast Highway by a 28-foot-wide section of compacted soil covered with asphalt layer and then a thin layer of dirt. Armor rock surrounds the vault on the other three sides.

The top of the extended vault area is approximately 20 feet wide by 42 feet long and includes three approximately three-foot by three-foot pump caisson openings on the southern end and an access hatch with ladder on the southwest side. The entire 20-foot by 42-foot vault enclosure is surrounded by chain link fencing with access through a locked gate on the north side.

1.2.3 Onshore Pipelines

The onshore facilities consist of a 36-inch-diameter steel casing that at least partially spans between the northern side of the vault (landward) and the valve pit located in the CRC onshore facilities north of the Ventura Freeway – U.S. Highway 101 (U.S. 101). Exiting the interior wall on the north side of the vault is a 36-inch-diameter steel casing containing one 14-inch-diameter steel pipeline, one 12-inch-diameter steel pipeline and one eight-inch-diameter polyvinyl chloride pipe (PVC pipe) liner inside of a second 12-inch-diameter steel pipeline. The annulus between the pipelines within the 36-inch steel casing are filled with a grout material where the pipelines enter the side of the vault. The extent of this grout fill is unknown and will have to be field verified during decommissioning.

Based on pipeline tracking data, the 36-inch-diameter steel casing appears to run underground approximately 220 feet to the northeast and terminate approximately 80 feet north of the Union Pacific Railroad (UPRR) easement. Pipe tracking data suggests that at least one pipeline exits the 36-inch-diameter casing and extends underground via the "A" Lease Canyon Road, underneath the U.S. 101 overpass for approximately 310 feet and terminates in a valve box on CRC onshore property. Depth of burial to the top of the 36-inch-diameter casing varies from approximately nine feet at the southern side of Pacific Coast Highway to over 11 feet while running under the UPRR easement and U.S 101 dirt frontage road.

2.0 PRE-PROJECT SITE INVESTIGATIONS

2.1 VAULT STANDING WATER

As previously indicated, Project facilities are only known to have been utilized in support of water intake/outfall. The facility was never used to handle, store, or discharge contaminated water, hydrocarbons, or hazardous materials.

Initial sampling of the standing water inside the shoreline vault was conducted in April 2019 (OEC, Attachment A). Representative grab samples were taken and tested in accordance with EPA Methods 8081A for the presence of pesticides, EPA Method 8082 for the presence of Polychlorinated biphenyls (PCBs), EPA Methods 8015M and 1664, for the presence of total petroleum hydrocarbons (TPH) and gasoline fuel components, EPA 8260 for Volatile Organic Compounds (VOCs). The sample was also tested for the presence of CAM 17 heavy metals and other parameters including pH, flashpoint, and reactives; as well as conducting a 96-hour bioassay to determine toxicity.

Lab results from samples indicate that a passing result was obtained from the 96-hour bioassay. Metals were not detected with exception of a low-level concentration of barium (0.19 mg/L or ppm) and zinc (0.70 mg/L or ppm) which were greater than the established reporting levels (RL) of 0.10 mg/L for barium and 0.050 mg/L for zinc, respectively, but well below Total Threshold Limit Concentration (TTLC) limits for Barium of 10,000 mg/kg and zinc of 5,000 mg/kg. TPH in the form of gasoline, diesel, or motor oil as well as VOCs, PCBs, or organochlorine pesticides were not detected (ND) in the grab samples. The pH level at 25°C was 7.48.

Prior to demolition, the water within the shoreline vault will be re-sampled, pumped out, and shipped offsite for appropriate disposal. Based on past use of the facility and the initial sampling results, no significant concentrations of contaminated materials are anticipated.

2.2 LEAD AND ASBESTOS

A mastic filler is present within the walls of the intake/outfall pipelines. Additionally, the vault still contains water pumps, piping, two levels of grating and other ancillary equipment. This material will be surveyed for the presence of asbestos containing materials (ACM) or lead based paint (LBP) just prior to the planned demolition activities. Once the vault has been dewatered, a visual inspection of these components will be conducted. Based on this inspection, representative bulk sample materials of the pipeline and any suspect components within the vault will be taken and sampled for the presence of ACMs or LBP (if painted surfaces are present). Samples will be sent to a State of California certified laboratory to be analyzed in accordance with US EPA standards.

3.0 PROJECT-RELATED WASTES/HAZARDOUS MATERIALS

The following list identifies potential Project-related wastes and/or hazardous materials to be addressed during Project activities as well as contingencies to be implemented during decommissioning activities to manage each waste stream.

- Onshore Vault Demolition: Potential for LBP or ACM
- Pipeline Removal: Potential for ACM in pipe wrap coating
- Construction Equipment and Refueling: Onshore primary removal methodology and/or offshore alternative removal methodology. Potential for petroleum hydrocarbons as fuels and/or lubricants in construction equipment utilized onsite.

3.1 ONSHORE VAULT DEMOLITION

The proposed final disposition of the shoreline vault is to remove all equipment and appurtenances from inside the vault, remove the entire vault structure down to 5 feet below the existing beach contours, and then abandon the remaining 7 feet in place. Prior to this activity, the standing water within the vault will be re-sampled, pumped out, and recycled in CRC's production facilities. The reinforced concrete vault ceiling will be saw cut and removed and all equipment, appurtenances and debris inside the vault will be removed and disposed or recycled at approved facilities. Once the water, equipment, appurtenances and debris have been removed from the interior of the vault, the vault walls will be cut into removable sections.

An inspection for ACM or LBPs will be conducted prior to demolition. If ACM or LBPs are present within the vault materials, a Licensed/Certified LBP Contractor certified by the California Department of Public Health will be contracted to accomplish LBP abatement prior to the commencement of vault demolition. If ACM is found in any vault contents or materials, a Certified Asbestos Abatement Contractor will aid in vault removal and disposal activities. Vault removal activities will be conducted in accordance with all applicable regulations pertaining to asbestos.

3.2 PIPELINE REMOVAL

The proposed primary submarine pipeline removal methodology consists of mounting a winch on top of the existing reinforced concrete vault and pulling the submarine pipeline segments to shore along their existing alignments. The onshore ends of each pipeline will be exposed by an excavator operating on the beach. Materials testing will be performed once the pipelines are uncovered to determine the presence of any hazardous materials.

The pipelines will be pulled along their existing alignments up onto the beach where they will be cut into sections, removed from the beach and trucked to an approved offsite recycler or disposal facility. Alternatively, should the onshore pipe recovery operation be unable to recover all of the submarine pipeline segments to shore, the anchored offshore marine work spread consisting of a dive support vessel and divers will be used to recover the remaining submarine pipeline segments. All remaining sections of pipeline will be recovered to the marine work spread for transport to the dock and recycling or disposal.

In ACM is found in the pipe mastic material, a Certified Asbestos Abatement Contractor will aid in pipeline removal and disposal activities. Pipeline removal activities will be conducted in accordance with all applicable regulations pertaining to asbestos.

3.3 CONSTRUCTION EQUIPMENT AND REFUELING

Decommissioning activities will require the use of a limited amount of equipment that utilizes petroleum hydrocarbons as fuels and/or lubricants; onshore using the primary removal methodology using excavators and a winch and/or offshore using the alternative removal methodology via vessel. This equipment presents the potential for spills or petroleum hydrocarbon releases to the ambient environment. Although a release is not expected due to the limited volume of petroleum hydrocarbons that will be present onsite and the short-term duration of work activities, the following best management practices (BMPs) will be implemented throughout decommissioning activities to further reduce the potential for a release:

- All petroleum hydrocarbons will be stored in double containment,
- All fuels and lubricants will be properly labeled,
- All petroleum hydrocarbons will be stored a safe distance away from potential ignition sources,
- Fueling shall be conducted in a manner best suitable to avoid a release,
- No vessel to vessel fuel transfers will be permitted,
- When feasible, equipment should be equipped with drip pans,
- All equipment will be inspected for leaks on a daily basis,
- If any equipment is observed to be leaking, the equipment will be shut off and the leak stopped, or the equipment replaced, and
- The oil spill response equipment identified in the Project's Oil Spill Response and Contingency Plan (provided as an appendix of the Contractor's Project Work and Safety Plan) will be maintained onsite throughout decommissioning activities.

4.0 WASTE MANAGEMENT

CRC proposes to handle wastes generated during the decommissioning activities in the following manner:

4.1 VAULT PURGE - WATER/EQUIPMENT

The standing water within the vault will be re-sampled and pumped out using a vacuum truck prior to demolition activities. As previously discussed within Section 2.1, the standing water was previously sampled and not found to contain any hazardous materials. Therefore, the vault water is anticipated to be pumped out and transported from the Project site for re-use in CRC's production facilities, or disposal as a non-hazardous material.

Equipment located within the vault includes water pumps, piping, two levels of grating and other ancillary equipment. If determined to be free of ACM, all equipment, appurtenances and debris inside the vault will be removed and recycled or disposed of at Ventura Regional Sanitation District Sanitary Landfill at Toland Road in Santa Paula.

If it is determined that any equipment contained within the onshore vault contains ACM, any asbestos debris generated during demolition activities will be placed in a lined 40-yard bin, labeled and lockable with asbestos signage to warn of the hazard, and disposed according to federal and state regulations. Materials would likely be taken to the Clean Harbors Hazardous Waste Facility in Buttonwillow, California.

4.2 PIPELINES

If it is determined that the pipeline coating material contains ACM, any asbestos debris generated during removal activities will be placed in a lined 40-yard bin, labeled and lockable with asbestos signage to warn of the hazard, and disposed according to federal and state regulations. The location for disposal of pipe with mastic coating would be the Clean Harbors Hazardous Waste Facility in Buttonwillow, California.

4.3 LEAD-BASED PAINT (LBP) MATERIALS (IF FOUND)

If LBP materials are detected within the vault during pre-construction inspections; LBP debris generated during demolition activities will be placed in a lined and labeled 55-gallon drum(s) and disposed according to federal and state regulations. The location for disposal of materials including LBP would be the Clean Harbors Hazardous Waste Facility in Buttonwillow, California.

5.0 REPORTING

In consultation with the applicable regulatory agencies, the procedures presented in this HMMCP will be implemented. CRC will notify the following agencies if unanticipated hazardous materials are encountered during decommissioning activities:

- California State Lands Commission
- Ventura County Environmental Health Division
- Regional Water Quality Control Board, Los Angeles District

6.0 REFERENCES

- Longitude 123, Inc. 2019. Project Execution Plan Grubb Lease Intake and Outfall Decommissioning Project, Revision 6 October 2019.
- Oilfield Environmental & Compliance, Inc. 2019. Grubb Lease Analytical Report (Work Order 1901882)

Attachment 1 –

Project Execution Plan (Longitude 123, October 2019)

PROJECT EXECUTION PLAN

GRUBB LEASE INTAKE AND OUTFALL DECOMMISSIONING PROJECT

REVISION 6 - OCTOBER 2019

CALIFORNIA RESOURCES CORPORATION 9600 MING AVENUE BAKERSFIELD, CA. 93311 ZACHARY DRANSOFF ENVIRONMENTAL PROJECT MANAGER TEL. 661-332-6294 Zachary.Dransoff@crc.com

DECOMMISSIONING CONTRACTOR

LONGITUDE 123, INC. 2100 VALLEY MEADOW DRIVE OAK VIEW, CALIFORNIA 93022 MARK STEFFY, PRESIDENT TEL. 805.649.9364 msteffy@longitude123.net CSLB 10126719

DECOMMISSIONING ENVIRONMENTAL MANAGER

PADRE ASSOCIATES, INC. 1861 KNOLL DRIVE VENTURA, CA. 93003 JENN LEIGHTON TEL. 805.644.2220 X31 jleighton@padreinc.com

DOCUMENT TITLE: PROJECT TITLE: DOCUMENT DATE: Project Execution PlanCRC Grubb Lease Intake and Outfall Decommissioning ProjectOctober 24, 2019REVISION:6

PAGE:

1

DOCUMENT NO:

SECTION 1 – PROJECT OVERVIEW

18-022-01-PEP

1.1 INTRODUCTION

California Resources Corporation (CRC) intends to decommission the previously retired Vintage Petroleum Grubb Lease Water Treatment Plant Intake and Outfall Facility. The Grubb Lease Intake and Outfall Facility is located approximately 4.4 miles northwest of Ventura, California on the shoreline of the Pacific Ocean approximately 1.3 miles east southeast of Pitas Point (see Figure 1). The marine portions of the facilities are located within the California State Lands Commission (CSLC) Lease PRC 3913.1.

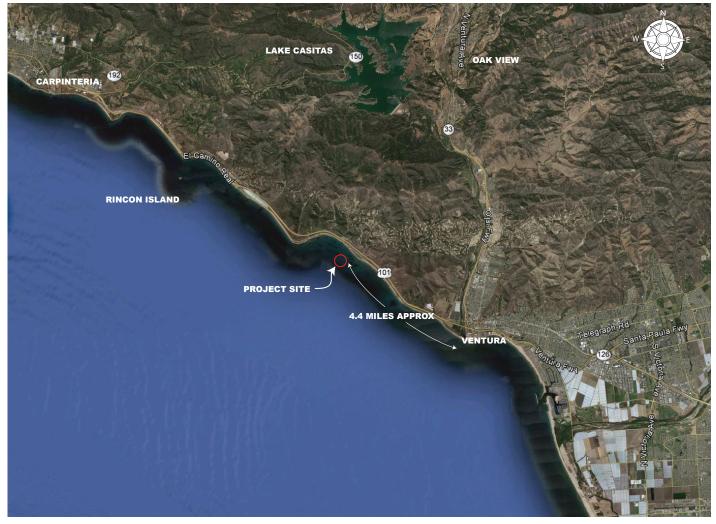
This "waterflood" support seawater intake and discharge facility was constructed in 1967/68. The date of the retirement of this facility is unknown. Some of the component details of this intake and discharge facility are known while others are currently inaccessible.

The facility was never used to handle, store or discharge contaminated water or hydrocarbons and the standing water inside the vault structure on the shoreline was tested in early 2019 and found to be contaminate free.

Generally, this retired waterflood support facility is comprised of three nominal 12-inch diameter steel pipe submarine pipelines (two seawater intake pipelines and one discharge pipeline) that extend from the seaward side of a reinforced concrete and steel sheet pile vault structure on the shoreline and terminate on the rocky seafloor approximately 500 to 700 feet offshore. Reinforced concrete intake structures rest on the seafloor at the offshore ends of the two intake pipelines. Onshore, a nominal 36-inch diameter steel pipe casing extends underground from the landward side of the vault, underneath Pacific Coast Highway and the adjoining Union Pacific Railroad (UPRR) line where it appears to terminate 80 feet north of the UPRR line approximately 10 feet underground. This 36-inch casing contains three pipelines at the vault end and one or more of these underground pipelines appear to extend underneath the Ventura Freeway "A" Lease Canyon Road overpass and may terminate in a valve box located inside CRC facilities on the north side of Ventura Freeway.

The decommissioning is scheduled to begin in late fall 2019 and to be completed in early 2020.

The intake structures at the offshore ends of the two intake pipelines will be recovered. All three submarine pipelines will be pulled ashore and cut into sections for transport to approved offsite disposal or recycling facilities. Alternatively, if the pipelines, or portions of the pipelines, cannot be pulled ashore, a dive support vessel and divers will be used to pull the pipelines segments offshore, cut and recover them, and then ship them to offsite disposal or recycling facilities.


After recovery of all three submarine pipelines, the vault on the beach will be demolished to a depth at least five feet below existing beach contours and the vault materials transported for offsite disposal or recycling.

All pipelines found inside the 36-inch casing will be removed from the casing, as feasible, and the 36-inch casing will be filled with cement slurry and abandoned in place. Alternatively, if the annulus between the pipelines and interior of the 36-inch casing is found to be already filled with cement, the pipelines inside the 36-inch casing will be filled with cement slurry and the 36-inch casing and pipelines will be abandoned in place.

Any pipelines between the landward termination of the 36-inch the casing and the valve box within the CRC facility will also be filled with cement slurry and abandoned in place.

Once all construction is complete, the existing rip rap rock that surrounded the vault on the beach will be used to create an armored rock shoreline matching the adjacent rip rap contours, and the surrounding areas returned to pre-construction contours and conditions. A post-construction bathymetric survey will confirm that all project-related debris has been removed from the offshore work area.

CALIFORNIA RESOURCES CORPORATION GRUBB LEASE OUTFALL DECOMMISSIONING

FIGURE 1 **GEOGRAPHIC SITE LOCATION**

DOCUMENT TITLE: PROJECT TITLE: DOCUMENT DATE: DOCUMENT NO:

 Project Execution Plan

 CRC Grubb Lease Intake and Outfall Decommissioning Project

 October 24, 2019
 REVISION:

 18-022-01-PEP
 PAGE:
 3

1.2 FACILITY HISTORY

Constructed in 1967, the purpose of this facility was to supply seawater to the onshore oil processing facility in support of groundwater flooding and to discharge treated clean water back into the ocean. None of the pipelines were ever used for the transmission of water with hydrocarbon content and the two submarine pipelines and outfall pipeline have been open to the ocean since their construction. These facilities are located alongside Pacific Coast Highway approximately 792 feet northwest of Solimar Beach at the foot of the "A" Lease Canyon Road underpass, underneath the Ventura Freeway (see Figure 2 and Figure 3).

1.3 FACILITY DESCRIPTION

1.3.1 Offshore Intake and Outfall Pipelines

The offshore portion of the facility consists of three 12-inch steel submarine pipelines consisting of two intake pipelines and one outfall pipeline (see Appendix A). This segment is below the Mean High Water Mark (MHWM). The Grubb lease intake/discharge facility was used to bring in seawater for oil-field related water flood operations and on occasion for discharge of the inlet seawater filter backwash to the ocean. Hydrocarbons were not present in the backwash sent through the outfall. The two intake pipelines measure approximately 680 feet in length and 630 feet in length and the outfall pipeline measures approximately 500 feet in length. All lengths are measured from the seaward side of the concrete vault to the offshore terminations of each pipeline, which are located in water depths ranging from 12 to 14 feet of water. The original materials specification and wall thickness of these pipelines are unknown. The pipelines appear to be coated with an anti-corrosive coating or weight coating of unknown composition, but most likely a mastic filler/sealer. The external coatings will be sampled prior to disposal and tested for the presence of any hazardous materials.

The shoreline consists of a narrow sand beach that is exposed during low tide events and inundated at high tide events. The beach is bordered on the northeast side by a steep armor rock covered slope. All three pipelines run southwest, spaced at approximately ten-degree increments from the vault structure on the beach. There are two reinforced concrete lattice box structures located on the seafloor at the offshore ends of the intake pipelines each measuring approximately 6 square feet and 6 feet in height. Both the pipelines and lattice box structures are gravity based and no anchoring system has been used to secure them to the seafloor.

All three pipelines are fully severed, as a result of corrosion, just south of the seaward side of the vault in the surf zone area (see Figure 5). At the severance points all three pipelines appear to be double walled with an inner and outer wall of steel or plastic pipe and a mastic filler between the walls. The seaward pipeline sections cross the shoreline just below the beach sand line and the remaining stubs north of the severance points enter the reinforced concrete vault above the sand line but below the high tide line.

Offshore, the pipelines appear to be intact and buried through the surf zone. The length and depth of cover appears to vary with the season and associated annual sand migration. This approximately 200-foot long surf zone segment has not been surveyed due to the difficulties of working in the surf zone. Further offshore, the remaining 300 to 500 feet of pipe are exposed and laying on a bedrock and sand seafloor. The exposure of the pipelines was identified in 2012 and 2019 geophysical subsea surveys and confirmed visually in a 2018 biological survey by divers.

FIGURE 2 SITE MAP

CALIFORNIA GRUBB LEASE OUTFALL DECOMMISSIONING

FIGURE 3 ONSHORE SITE MAP

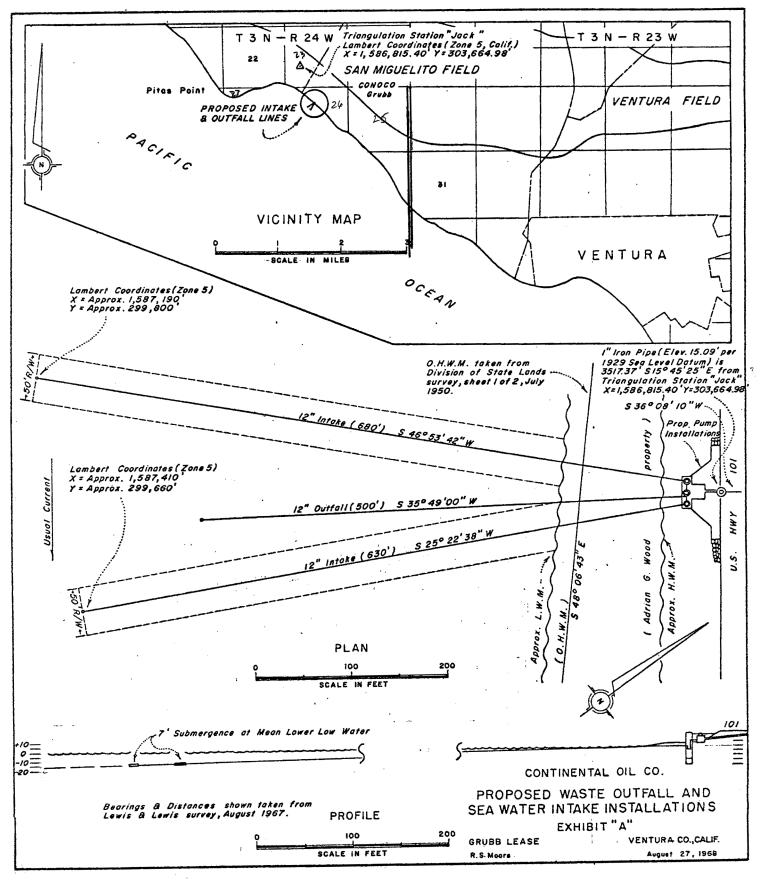


FIGURE 4 - CONTINENTAL OIL COMPANY PROPOSED WASTE OUTFALL AND SEA WATER INTAKE INSTALLATOINS - EXHIBIT "A"

CALIFORNIA RESOURCES CORPORATION GRUBB LEASE OUTFALL DECOMMISSIONING FIGURE 5 SEVERED PIPELINES

DOCUMENT TITLE: PROJECT TITLE: DOCUMENT DATE:

DOCUMENT NO:

 Project Execution Plan

 CRC Grubb Lease Intake and Outfall Decommissioning Project

 October 24, 2019
 REVISION:

 18-022-01-PEP
 PAGE:
 8

1.3.2 Shoreline Vault

The shoreline vault is a reinforced concrete and steel sheet pile structure set in the armor rock seawall between Pacific Coast Highway and the intertidal zone. This segment is above the MHWM. The vault's seaward side is inaccessible during periods of high tide. The vault measures approximately 20 feet wide by 14 feet long and 27 feet deep. The two intake pipelines and one outfall pipeline were originally connected to the seaward side of this vault.

Three pipelines within a 36-inch casing exit the vault on the north side (landward side). The vault interior is partially filled with water to a depth of approximately 16 feet and still contains water pumps, piping, two levels of grating and other ancillary equipment, much of it submerged. The interior water level does not change with the tides and so appears to be isolated from the ocean. Due to the flooded condition, the vault interior has only been partially surveyed.

The vault is approximately 27 feet deep and terminates approximately 12 feet below the surrounding sand beach level. Large pumps and equipment appear to be fastened to the floor of the vault and the floor is assumed to be concrete. The interior vault walls and ceiling are concrete, and the exterior walls are sheathed with steel sheet pile.

The northern wall of the vault is separated from Pacific Coast Highway by a 28-foot wide section of compacted soil covered with an asphalt layer and then a thin layer of dirt. Armor rock surrounds the vault on the other three sides.

The top of the extended vault area is approximately 20 feet wide by 42 feet long and includes three approximately 3-foot by 3-foot pump caisson openings on the southern end and an access hatch with ladder on the southwest side. The entire 20-foot by 42-foot vault top is surrounded by chain link fencing with access through a locked gate on the north side.

1.3.3 Onshore Facilities

The onshore facilities consist of underground pipelines and support structure that span between the northern side of the vault (landward) and the valve pit located in the CRC facilities north of the Ventura Freeway. This segment is above the MHWM. Exiting the interior wall on the north side of the vault is a 36-inch diameter steel casing containing one 14-inch diameter steel pipeline, one 12-inch diameter steel pipeline and one 8-inch diameter PVC pipe liner inside of a second 12-inch diameter steel pipeline. The annulus between the pipelines within the 36-inch steel casing is filled with a grout material where the pipelines enter the side of the vault. The extent of this grout fill is unknown and will have to be field verified during decommissioning.

Based on pipeline tracking data, the 36-inch casing appears to run underground approximately 220 feet to the northeast and terminates approximately 80 feet north of the UPRR easement. Pipe tracking data suggests that at least one pipeline exits the 36-inch casing and extends underground via the "A" Lease Canyon Road and underneath the Ventura Freeway overpass a distance of approximately 310 feet and terminates in a valve box on CRC property. Depth of burial to the top of the 36-inch casing varies from approximately 9 feet at the southern side of Pacific Coast Highway to over 11 feet while running under the UPRR easement and Ventura Freeway dirt frontage road.

1.4 DECOMMISSIONING PROJECT TEAM

The decommissioning team consists of the following members:

1.4.1 Decommissioning Manager – Longitude 123, Inc.

DOCUMENT TITLE:Project Execution PlanPROJECT TITLE:CRC Grubb Lease Intake and Outfall Decommissioning ProjectDOCUMENT DATE:October 24, 2019DOCUMENT NO:18-022-01-PEPPAGE:9

Longitude 123, Inc. (L123) will serve as the project's decommissioning manager and is responsible for the preparation of all technical documents, plans, specifications and for performance of the decommissioning work. L123 is located in Oak View, California. Contact information for L123 is as follows:

Longitude 123, Inc. 2100 Valley Meadow Drive Oak View, CA. 93022

Attention:Scot Anderson
Decommissioning ManagerTel:805.796.1235Fax:805.649.9864Cell:805.796.1235Email:sanderson@longitude123.net

1.4.2 Engineering Consultant – YCE Incorporated

YCE Incorporated (YCE) will serve as the project's engineering consultant and is responsible for engineering analysis, calculations, and production of the project's plans and specifications.

YCE Incorporated 1587 Morse Avenue, Suite A Ventura, CA. 93003

Attention: Marta Alvares, P.E., P.L.S. President Tel: (805) 650.6995 Fax: (805) 677.4721 Email: <u>yce-mya@pacbell.net</u>

DOCUMENT TITLE: PROJECT TITLE: DOCUMENT DATE: Project Execution PlanCRC Grubb Lease Intake and Outfall Decommissioning ProjectOctober 24, 2019REVISION:6

DOCUMENT NO:

18-022-01-PEP

PAGE: 10

SECTION 2 – PROJECT DESCRIPTION

2.1 OVERVIEW

The proposed facility final dispositions and project methodologies are provided in the following sections.

2.2 PRE-PROJECT PLANS AND SURVEYS

Once all regulatory permits are received, but prior to the start of site work, the following technical plans and surveys will be completed:

- a. Produce a Project Work and Safety Plan (PSWP) that provides the following:
 - Project-specific Emergency Action Plans
 - Project Contacts
 - Final Scope of Work and final dispositions
 - Updated Project Schedule
 - Step-by-step Procedures with supporting engineering calcs
 - Quality Management Plan
 - Project Management and Communications Plan
 - Site Safety Plan
 - Diving Safety Plan
 - Critical Operations and Curtailments Plan
 - Survey Plan (onshore and offshore)
 - Confined Space Entry Plan
 - Oil Spill Contingency Plan
 - Marine Safety and Anchoring Plan with anchoring pre-plot
 - Excavation Plan
 - Certified Traffic Management Plan
 - Hazardous Materials Management Plan (if hazardous materials are found)

Other plans and information required to perform the work safely and in compliance with all regulatory permits and permissions, Cal OSHA safety regulations, U.S. Coast Guard safety regulations, and owner's safety requirements will also be developed as applicable. This PWSP will be submitted to all pertinent agencies for review and approval prior to the start of site work.

- b. Produce a pre-project multi-beam seafloor survey, with 400% coverage, of the offshore area around the pipelines, including the proposed anchor spreads. This will serve as the baseline seafloor debris survey that will be compared against a post-decommissioning seafloor debris survey of the same area to ensure that no project-related debris has been left underwater on the seafloor.
- c. Conduct a pre-project topographic survey of the armor rock sea wall on each side of the vault to determine the pre-construction contours and conditions of the sea wall. This will serve as the baseline for reconstructing the seawall after removal of the vault and the construction access ramp and restoration of the site to existing contours.
- d. Conduct an 811 utility location survey (DigAlert) from the northern wall of the vault to the valve pit on the CRC property to ensure that all utilities are identified and located on the survey maps.

DOCUMENT TITLE: PROJECT TITLE: DOCUMENT DATE:

DOCUMENT NO:

Project Execution PlanCRC Grubb Lease Intake and Outfall Decommissioning ProjectOctober 24, 2019REVISION:618-022-01-PEPPAGE:11

Prior to the start of offshore and onshore decommissioning activities, the work area will be staged in accordance with the pre-approved Traffic Plan. This will include setting up equipment and materials staging areas along the southern shoulder of Pacific Coast Highway; the closure of the eastbound bicycle and vehicle lane of Pacific Coast Highway; and the temporary rerouting of both eastbound and westbound traffic into the existing center divider and westbound lanes of Pacific Coast Highway. This traffic diversion will be maintained throughout the project to ensure there are public safety margins for equipment moving on and off the beach each day, loading pipe sections into trucks, excavating the vault, etc. While occasional traffic stops on Pacific Coast Highway may be needed during equipment ingress and egress, no long-term full closure of Pacific Coast Highway is anticipated. A preliminary work area and traffic impact layout is provided in Figure 6. Note that this plan is subject to change upon completion of the Traffic Plan.

A temporary equipment access ramp will be constructed across the existing armor rock seawall approximately 50 feet south of the concrete vault to provide equipment access to the project site. An excavator will remove and relocate the existing armor rock as needed to create the foundation for the equipment access ramp. All rock removed will be stored for replacement upon completion of construction activities. An excavator and loader will place smaller rock and cobble on top of the existing armor rock seawall to create a ramp of sufficient density and strength to allow tracked construction equipment to travel across it to the beach. The equipment access ramp will be approximately 30 feet wide and 60 feet long.

2.3 OFFSHORE FACILITIES DECOMMISSIONING

The proposed final disposition of the offshore facilities is to remove the two reinforced concrete lattice intake structures and all three 12-inch submarine pipelines in their entirety.

Offshore work will be initiated by anchoring the dive support vessel over the terminus of the intake structures (as detailed in the Anchoring Plan). Divers will be deployed to cut and remove the intake structures from each intake pipeline. A guillotine saw with a hydraulic power pack will be used to make the cut. Once cut the intake structures will be winched vertically to the surface and recovered onboard the vessel.

The proposed primary submarine pipeline removal methodology consists of mounting a winch on top of the existing reinforced concrete shoreline vault and pulling the submarine pipeline segments to shore along their existing alignments. Recovery operations have been scheduled when beach and surf zone sand cover is the lowest due to winter and early spring storm conditions. If the onshore ends of each pipeline are not already exposed, they will be exposed by an excavator operating on the beach. The ends of each pipeline will be cut and prepared for rigging of a pull wire or bridle. Tension will be slowly increased on the pipeline pulling wire allowing the pipelines to be pulled both vertically and horizontally until the pipeline is completely free of the surf zone sand cover. The pipelines will then be pulled along their existing alignments up onto the beach where they will be cut into lengths capable for trucking offsite (Figure 7). Once cut, the segments will be lifted from the beach, placed on a flatbed truck and trucked to an approved offsite recycler or disposal facility. This use of the vault and associated recovery of the offshore pipelines to shore will be performed prior to decommissioning the shoreline vault and armor rock.

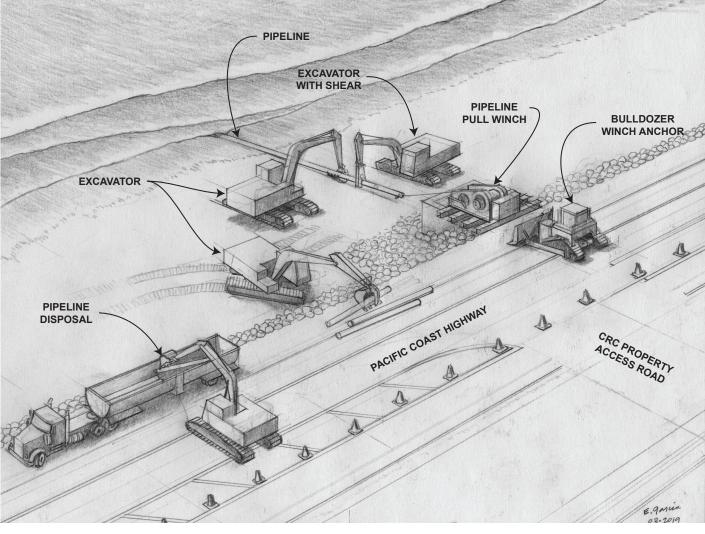

Although engineering calculations have determined that pulling forces needed to free the pipeline segments from the surf zone do not exceed the tensile strength of the pipeline, there is a possibility a portion of pipelines cannot be recovered from shore. Should the onshore pipe recovery operation be unable to recover all of the offshore pipeline segments to shore, the existing anchored offshore dive support vessel and divers will be used to recover the remaining offshore pipeline segments. Work will be limited to the existing pipeline corridor and pipeline segments and will be cut into manageable segments and lifted vertically to the surface for recovery on the

FIGURE 6 SITE WORK AREA PLAN

CALIFORNIA GRUBB LEASE OUTFALL DECOMMISSIONING

CALIFORNIA RESOURCES CORPORATION GRUBB LEASE OUTFALL DECOMMISSIONING FIGURE 7 OFFSHORE PIPELINE PULL TO SHORE AND REMOVAL

DOCUMENT TITLE:Project Execution PlanPROJECT TITLE:CRC Grubb Lease Intake and Outfall Decommissioning ProjectDOCUMENT DATE:October 24, 2019DOCUMENT NO:18-022-01-PEPPAGE:14

dive support vessel using an onboard winch or crane. The dive vessel will be positioned over the cut point using the existing three-point anchoring spread.

In the event the unrecovered pipeline is located within the surf zone, recovery efforts will have to be limited to periods of low wave action and/or extreme low tides. These recovery efforts will also be timed during the winter and early spring beach profile conditions when the least amount of sand will be over the pipelines. If the remaining section is on the ocean side of the surf zone, divers will be deployed from the dive support vessel to expose the pipeline using a jet pump and then rig the exposed section for pulling to the vessel. Alternatively, if the remaining section is on the landward side of the surf zone, an excavator will be used during a period of extreme low tide to expose the remaining segment and rig the section for recovery to the beach using the vault mounted winch.

2.4 SHORELINE VAULT DECOMMISSIONING

The proposed final disposition of the shoreline vault is to remove all equipment and appurtenances from inside the vault and then remove the entire vault structure down to 5 feet below the existing beach contours and abandon the remaining 7 feet in place.

The decommissioning of the vault will begin once the submarine pipelines have been removed. The reinforced concrete vault ceiling will be saw cut and removed to allow access to the interior of the vault. The water in the vault, which was sampled in early 2019 and found to be contaminate free, will be re-sampled, pumped out, and shipped offsite for appropriate disposal. Once the water has been removed the internal water pumps, piping, two levels of grating, and other ancillary equipment will be removed and trucked offsite for recycling or disposal.

To facilitate removal of the vault, all armor rock currently surrounding the vault will be removed to expose the vault walls down to the beach elevation (Figure 8). Sand may also be excavated from the vault exterior in order to facilitate vault removal. The perimeter around the open excavation will be fenced off. Lower portions of the existing riprap around the perimeter of the vault will be left in place to inhibit backfill from surrounding sand during high tide periods.

Once the armor rock has been relocated from the interior of the vault, the four vault walls will be cut into removable sections with the use of a hydraulically powered rotary demolition saw (cuts both concrete and steel) attached to an excavator boom (Figure 9). In use, the excavator will reach inside the interior and make a horizontal cut around the base of the walls at an elevation at least 5 feet below the existing sand grade or at a lower elevation if conditions permit. Horizontal cuts may also be made from the exterior as well. After the base cut has been completed, the saw will be used to cut the walls into vertical sections for removal. An excavator will be used to grasp the cut wall pieces and place them in trucks for offsite disposal or recycling at approved facilities.

The vault removal process will likely result in several days during which the vault will fill with water at high tide periods. During low tide work periods, the water will be pumped back out and sand that has migrated back into the vault will be removed, as needed.

The 36-inch diameter steel casing that connects into the shoreward side of the vault, and pipes contained in that casing, will be excavated and cut back approximately even with the existing earth slope of the armor rock seawalls that exist on either side of the vault. The casing and pipes contained in the casing will have been decommissioned in accordance with the description in Section 2.5 – Onshore Pipeline Decommissioning below.

Once all walls are cut at least 5 feet below the local sand level, the area will be backfilled. Depending on the amount of natural sand movement, it is estimated that approximately 75 cubic yards of sand will be used to fill voids within the seawall. The site will then be recontoured and the armor rock repositioned over the project site to match pre-decommissioning contours.

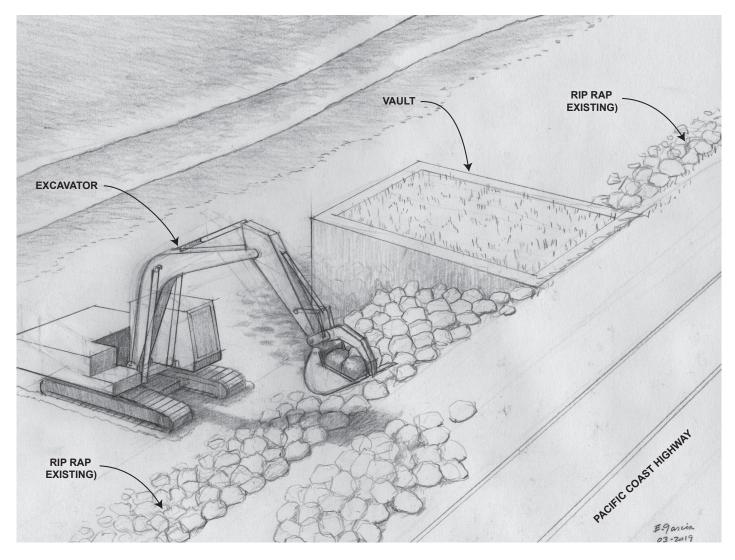


FIGURE 8 RIP RAP REMOVAL FROM AROUND VAULT

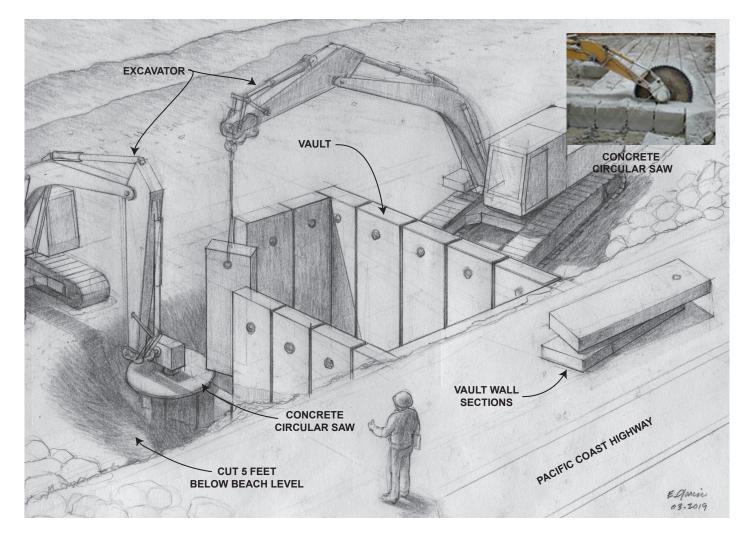


FIGURE 9 VAULT REMOVAL

DOCUMENT TITLE: PROJECT TITLE: DOCUMENT DATE: DOCUMENT NO: Project Execution PlanCRC Grubb Lease Intake and Outfall Decommissioning ProjectOctober 24, 2019REVISION:18-022-01-PEPPAGE:17

2.5 ONSHORE FACILITIES DECOMMISSIONING

The final disposition of the onshore facilities is to fill the 36-inch casing and associated internal pipelines with cement slurry and abandon it in place, except as detailed below. This work will be performed prior to the Shoreline Vault Decommissioning detailed in section 2.4.

In order to access the casing, two potholes will be excavated along the casing and/or pipeline route between the vault and the CRC facilities. These pothole locations are shown on Sheet 4 in Appendix A. The first pothole will be just north of the UPRR right-of-way, where based on the results of the pipeline tracking the casing appears to terminate. This will provide visual and quantifiable evidence on the casing, pipelines and level of cementing in the casing annulus between the southern end of the casing in the vault and the northern end of the casing at the pothole. The second pothole will be at the valve pit inside the CRC facilities on the north side of the Ventura Freeway. This will provide visual and quantifiable evidence on the pipelines between the two potholes. The excavations will use trench boxes to limit cut volumes and the disturbed areas surrounding the potholes. No traffic impacts to Pacific Coast Highway, the 101 Freeway or the access road to the CRC facilities are anticipated.

If the pipelines inside the casing between the vault and the first pothole are not cemented in place and can be removed, they will either be pulled to the vault structure or to the pothole where they can be saw cut into sections and recovered. The casing will then be filled with cement slurry and abandoned in place. If the pipelines carried inside the 36-inch casing are found to be already cemented into the 36-inch casing, the pipelines will be filled with cement slurry and abandoned in place inside the 36-inch casing between the vault and the first pothole. A cement pumping unit will be used to pump slurry from the pothole downslope to the vault.

If the internal pipelines inside the casing continue to extend between the northern end of the 36-inch casing (the first pothole) and their termination in the valve box located inside CRC facilities (the second pothole) they will be filled with cement slurry and abandoned in place. As before the cement slurry will be pumped from the upper pothole downslope to the first pothole location

Upon completion of the removal of the pipelines between the vault and the first pothole and the pumping of the slurry into the casing and/or pipelines between the vault and the second pothole, the trench boxes will be removed, and the potholes backfilled and compacted. The surrounding areas will be contoured to pre-construction conditions.

Upon completion of pipeline and vault removal activities, terrestrial construction equipment working from the shoulder of the road will deconstruct the equipment access ramp and construct the armor rock seawall at the removed vault location using original armor rock from the vault perimeter. The reconstructed armor rock seawall will match pre-decommissioning contours.

Upon completion of the offshore decommissioning work, a second offshore geophysical debris survey will be performed, and the results compared to the initial baseline seafloor debris survey. Any anomalous seafloor objects located in the survey will be positively identified by divers and any remaining objects related to the decommissioning will be removed. A Project close-out report with drawings and coordinates of all facilities abandoned in place will be submitted to the Commission within approximately 60 days of the completion of the work.

DOCUMENT TITLE: PROJECT TITLE: DOCUMENT DATE:

Project Execution Plan CRC Grubb Lease Intake and Outfall Decommissioning Project REVISION: October 24, 2019 6 18-022-01-PEP

DOCUMENT NO:

PAGE: 18

2.6 ESTIMATED AREAS AND VOLUMES

The estimated disturbed areas and volumes of project materials are provided in the following table.

Table 1. Estimated Areas and Vo	lumes of Project Materials
---------------------------------	----------------------------

		Length	Area of	Volume (Excavation)
Project Component/Description	Material	(ft)	Disturbance (sq ft)	(cu ft)	(cu yd)
	Below Mea	n High Wate	r Mark		
Offshore Intake and Outfall Pipelir	es Segment				
Intake Pipeline (North)	Sand/Rock	680	680	400	15 ¹
Intake Pipeline (South)	Sand/Rock	630	630	400	15 ¹
Outfall Pipeline	Sand/Rock	500	500	400	15 ¹
Moorings (5 @ 50 ft diameter)	Beach Sand		9,813		
Concrete Lattice Box Structures (2 @ 6 ft x 6 ft)	Concrete		36		
Beach Sand Around Vault Exterior	Beach Sand		600	3,600	133 ²
Temporary Equipment Access	Armor Rock/	42	675	5,062	188
Ramp	Rock and Cobble				
	Shorelin	e Vault Segm	nent	1 1	
Vault Rip Rap Moved	Armor Rock	100	2,000	24,000	889
	Above Mea	n High Wate		,	
Seawall Construction in Place of	Armor Rock	60	900	13,500	500
Vault					
Temporary Rip Rap Storage	Armor Rock		1,325		
Onshore Pipelines Segment				1 1	
Pothole Excavation (under road)	Topsoil		800	10,000	370
Pothole Excavation (CRC valve	Topsoil		800	400	15 ³
pit)					
Concrete Slurry (casing)	Concrete	227		1,600	59
Concrete Slurry (pipelines)	Concrete	534		1,269	47
Staging/Access Areas	N/A		7,497		
[8,295 sq ft total minus					
temporary equipment access					
ramp (798 sq ft)]					
Totals:				· · ·	
Total (above MHWM)		821	11,322	26,769	991
Total (below MHWM)		1,952	14,934	33,862	1,255
Total – All Project Segments		2,773	26,256	60,631	2,246
Notes:	-			· ·	

DOCUMENT TITLE: PROJECT TITLE: DOCUMENT DATE:

DOCUMENT NO:

Table 1. Estimated Areas and Volumes of Project Materials

	Length		Area of	Volume (Excavation)					
Project Component/Description	Material	(ft)	Disturbance (sq ft)	(cu ft)	(cu yd)				
1 Volume for the offshore pipeline reflects a 1 ft cover from the distance of each pipeline from the surf zone									
(approximately 5 ft offshore contour) to the shoreline vault. Pipelines are exposed on the seafloor offshore of									
the surf zone.									
2 Beach sand around vault exterior was calculated based on a liner distance of 100 feet of vault wall on the									
three beach sides to a dept of 6 feet below local sand level, which will be at its lowest annual point during the									
winter work period when the san	winter work period when the sand cover migrates offshore.								
3 Pole excavation (CBC value nit) w	as calculated base	ed on a 12 fe	et hy 24 feet excava	tion for the t	rench hoy to a				

3 Pole excavation (CRC valve pit) was calculated based on a 12 feet by 24 feet excavation for the trench box to a depth of about 10 feet to provide full access around the pipeline.

2.7 PROPOSED MANPOWER AND EQUIPMENT

The proposed manpower and equipment for the offshore and onshore portions of the project are provided in the following tables. These Manpower and Equipment tables are provided to assist with air quality calculations, if necessary.

Equipment Type	Quantity	Horsepower	Hours/Day	# of Days				
Onshore								
Onshore Casing and Pipeline Decommissioning								
Excavator	1	310	10	10				
Crane	1	220	10	10				
4x4 Truck	1	325	10	10				
Cement Truck	5	300	10	1				
Cement Pump	1	85	10	1				
Onshore Pipeline Recovery and Removal	•							
Excavator	3	310	10	9				
Winch	1	150	10	9				
Bulldozer	1	435	2	9				
4x4 Truck	1	325	5	9				
Onshore Vault Removal and Armor Rock	Reconstructior	1						
Excavator	3	310	10	10				
Crane	1	220	10	10				
4x4 Truck	1	325	5	10				
Vacuum Truck	5	225	10	1				
Offshore								
Offshore Intake Structure Removal								
Dive Support Vessel	1	1,000	24	4				

Table 2. Project Equipment List

 DOCUMENT TITLE:
 Project Execution Plan

 PROJECT TITLE:
 CRC Grubb Lease Intake and Outfall Decommissioning Project

 DOCUMENT DATE:
 October 24, 2019
 REVISION:
 6

 DOCUMENT NO:
 18-022-01-PEP
 PAGE:
 20

Equipment Type	Quantity	Horsepower	Hours/Day	# of Days			
Shallow Air Dive System	1	50	12	4			
Offshore Pipeline Removal Option – Pull Offshore (Alternative) ¹							
Dive Support Vessel	1	1,000	12	4			
Shallow Air Dive System	1	50	12	4			
Notes:							
1 The alternative scenario would not requ	ire additional c	onstruction days or	equipment.				

Table 3. Personnel Requirements

Labor	Quantity	Hours/Day	# of Days					
Traffic Control								
Flagman	6	10	73 ¹					
	Onshore	•						
Onshore Casing and Pipeline Decommissioning								
Project Manager	1	10	10					
Site Supervisor	1	10	10					
Heavy Equipment Operator	3	10	10					
Rigger	2	10	10					
Onshore Pipeline Recovery and Removal								
Project Manager	1	10	9					
Site Supervisor	1	10	9					
Heavy Equipment Operator	3	10	9					
Rigger	2	10	9					
Onshore Vault Removal and Armor Rock Reconstr	uction							
Project Manager	1	10	10					
Site Supervisor	1	10	10					
Heavy Equipment Operator	3	10	10					
Rigger	2	10	10					
	Offshore							
Offshore Intake Structure Removal								
Project Manager	1	12	4					
Dive Supervisor	1	12	4					
Diver	3	12	4					
Tender	1	12	4					
Surveyor	1	12	4					
Marine Wildlife Monitor	1	12	4					
Offshore Pipeline Removal Option – Pull Offshore	(Alternative) ²							
Project Manager	1	12	4					
Dive Supervisor	1	12	4					

 DOCUMENT TITLE:
 Project Execution Plan

 PROJECT TITLE:
 CRC Grubb Lease Intake and Outfall Decommissioning Project

 DOCUMENT DATE:
 October 24, 2019
 REVISION:

 DOCUMENT NO:
 18-022-01-PEP
 PAGE:
 21

Labor	Quantity	Hours/Day	# of Days
Traf	fic Control		
Flagman	6	10	73 ¹
Diver	3	12	4
Tender	2	12	4
Surveyor	1	12	4
Marine Wildlife Monitor	1	12	4
Notes:	•		
1 Flagman (6) will be used throughout Project activit	ies.		

2 The alternative scenario would not require additional construction days.

DOCUMENT TITLE: PROJECT TITLE: DOCUMENT DATE:

DOCUMENT NO:

 Project Execution Plan

 CRC Grubb Lease Intake and Outfall Decommissioning Project

 October 24, 2019
 REVISION:

 18-022-01-PEP
 PAGE:
 22

SECTION 3 – PRELIMINARY SCHEDULE SUMMARY

The preliminary schedule for the decommissioning and removal of the offshore and onshore facilities associated with this retired seawater intake and outfall installation is provided in the following table. Additional details are provided in Appendix B – Preliminary Schedule.

3.1 SCHEDULE ASSUMPTIONS AND CONDITIONS

This Preliminary Schedule incorporates the following conditions and assumptions:

- Assumes a winter work window in 2020 to take advantage of sand migration off of the pipelines in the surf zone.
- Assumes there are no restrictions on work windows for both offshore and onshore work.
- Assumes a 12-hour per day, 7-day per week schedule (daylight) for offshore operations.
- Assumes a 10-hour per day, 6-day per week schedule (daylight) for onshore operations. However, some night operations may be required to take advantage of low tide periods during pipeline recovery and removal.

3.2 CONSTRUCTION SCHEDULE SUMMARY

The following is a summary of the construction timing by task:

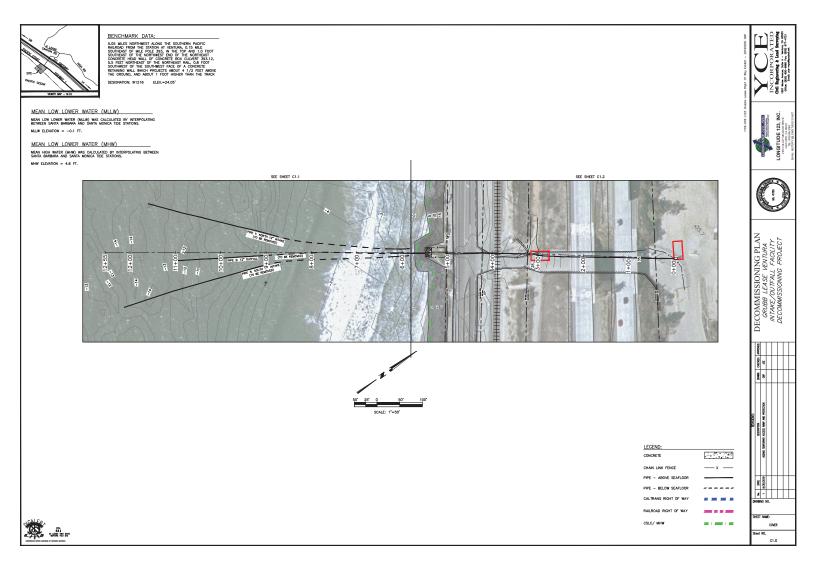
Table 4. Project Construction Duration

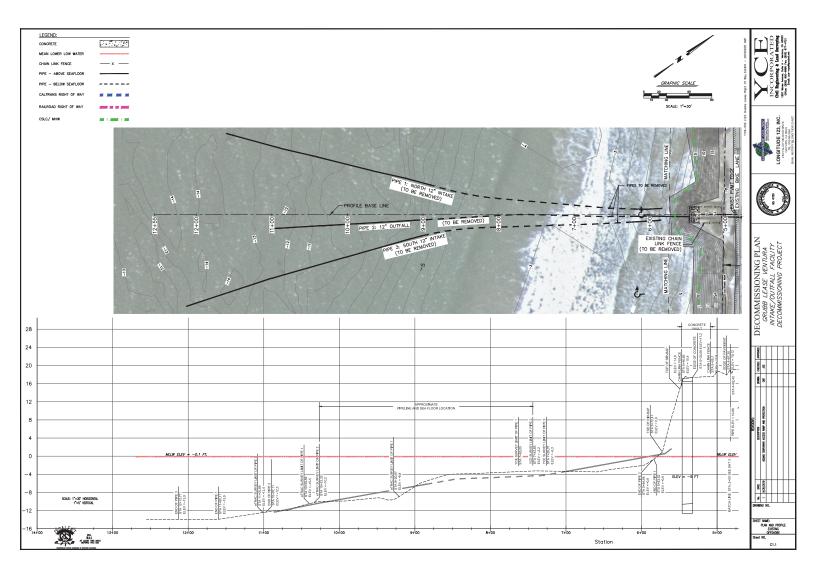
Project Activity	Estimated Duration (days)
Mobilization	
Perform Seafloor Debris Survey	2
Onshore Work	
Mobilization	15
Strip Concrete Vault – Piping/Fencing/Electric	1
Casing and Pipeline Decommissioning	15
Offshore Pipeline Recovery and Removal	15
Vault Removal and Seawall Construction	15
Demobilization	2
Offshore Work	
Mobilization	1
Recover Intake Structures	4
Demobilization	1
Final Surveys	
Perform Seafloor Debris Survey	2
Total Duration	73

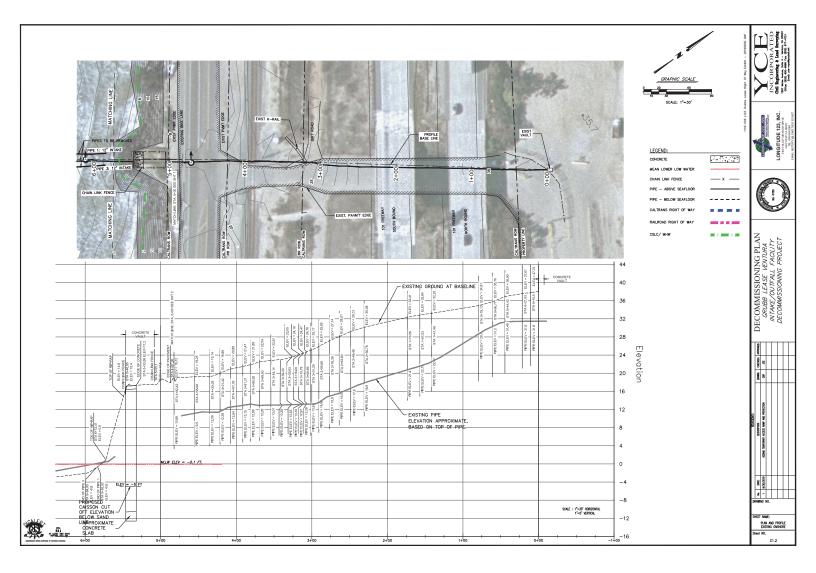
 DOCUMENT TITLE:
 Project Execution Plan

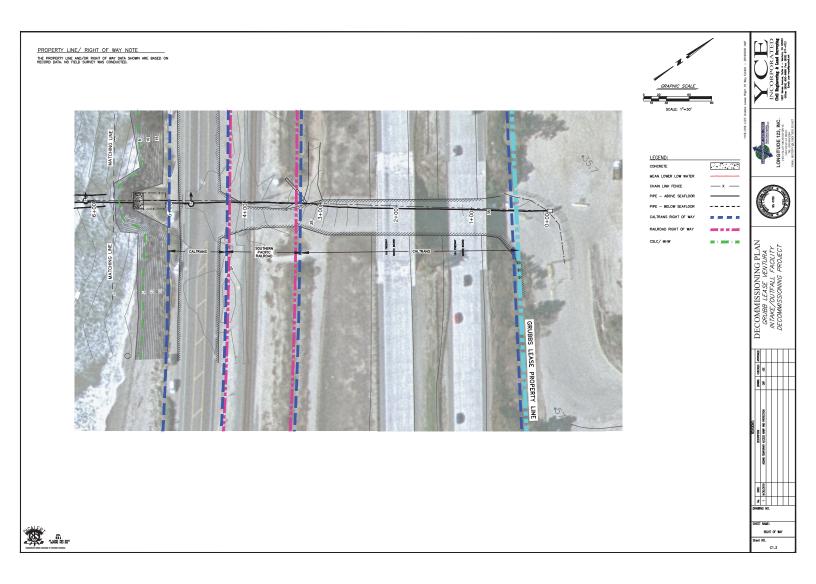
 PROJECT TITLE:
 CRC Grubb Lease Intake and Outfall Decommissioning Project

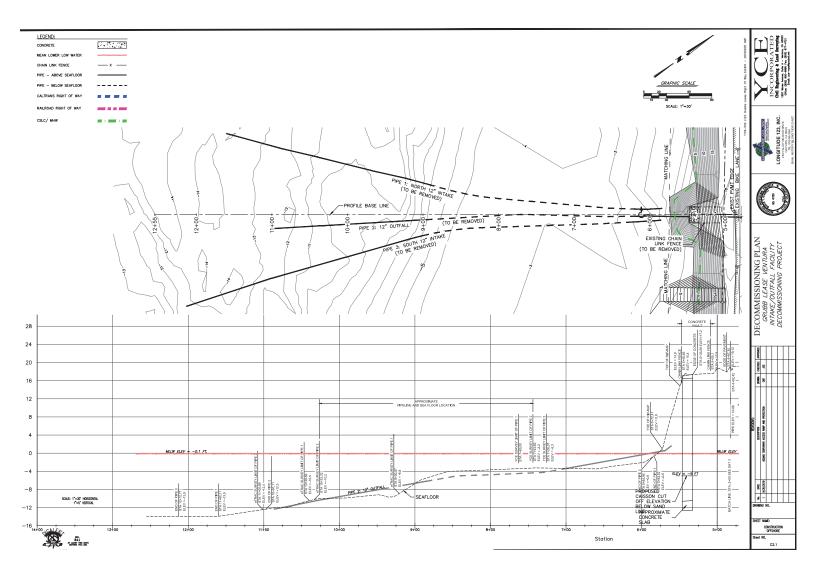
 DOCUMENT DATE:
 October 24, 2019
 REVISION: 6

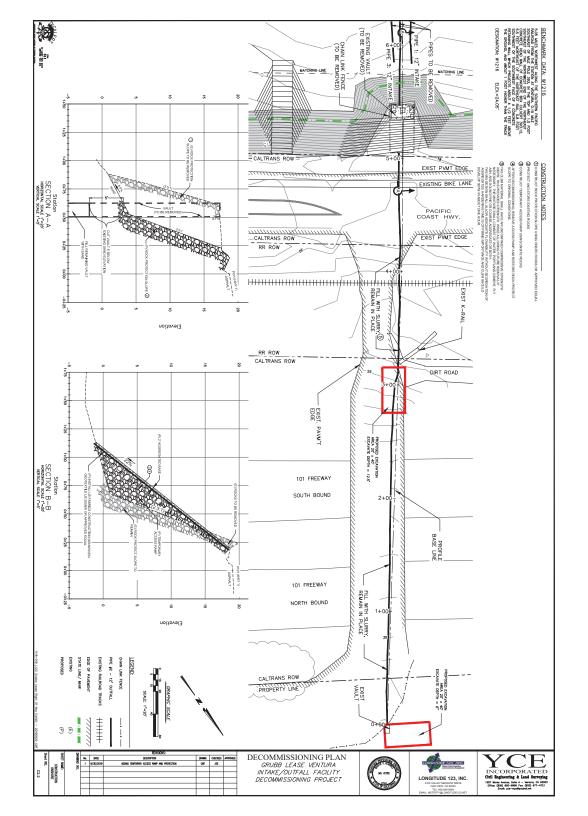

 DOCUMENT NO:
 18-022-01-PEP
 PAGE: 23


APPENDIX A – PLANS AND SPECIFICATIONS


This appendix contains the 60% project plans and specifications consisting of the following drawings:


- Sheet C1.0 Cover
- Sheet C1.1 Plan and Profile Existing Offshore
- Sheet C1.2 Plan and Profile Existing Offshore
- Sheet C1.3 Right of Way
- Sheet C2.1 Construction Offshore
- Sheet C2.2 Construction Offshore





DOCUMENT TITLE:Project Execution PlanPROJECT TITLE:CRC Grubb Lease Intake and Outfall Decommissioning ProjectDOCUMENT DATE:October 24, 2019DOCUMENT NO:18-022-01-PEPPAGE:30

APPENDIX B – PRELIMINARY SCHEDULE

				SE OCEAN OUTF	
Activity ID	Activity Name	Calendar	Original Duration Start	Finish	Qtr 3, 2018 Qtr 4, 2018 Qtr 1, 2019 Qtr 2, 2019 Qtr 3, 2019 Qtr 4, 2019 Qtr 1, 2020
18-022 CPC Grubt	s Lease Ocean Outfall Decommissioning	7-Day Workweek	683 29-Jun-18A	11-May-20	Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
	actual/Administrative	7-Day Workweek	0 29-Jun-18A	29-Jun-18 A	29-Jun-18/A, 18-022.01 Contractual/Administrative
01.010	Notice to Proceed	7-Day Workweek	0 29-Jun-18A	29-JUII-1074	Notice to Proceed. 29-Jun-18A
18-022.02 Plann		7-Day Workweek	598 29-Jun-18	16-Feb-20	Note to Hodeau, 29-bit PloA
	Desktop Study/Literature Review	7-Day Workweek	30 29-Jun-18	28-Jul-18	28-Jul-18, 18-022.02.01 Desktop Study/Literature Review
02.01.010	Review Existing Information	7-Day Workweek	10 29-Jun-18	28-Jul-18	Review Existing Information
02.01.010	·	7-Day Workweek	10 29-Jul-18	18-Jul-18	Perform Environmental Queries
	Perform Environmental Queries				Produce Initial Report w/ Agencies/Permits Required
02.01.030	Produce Initial Report w/Agencies/Permits Required	7-Day Workweek	5 19-Jul-18	23-Jul-18 28-Jul-18	Conduct Permitting Strategy Meeting
02.01.040	Conduct Permitting Strategy Meeting	7-Day Workweek	5 24-Jul-18		MILESTONE - Desktop Study Completed,
02.01.050	MILESTONE - Desktop Study Completed	7-Day Workweek	0	28-Jul-18	
	Site Characterization	7-Day Workweek	29 14-Jul-18	11-Aug-18	11-Aug-18, 18-022.02.02 Site Characterization
02.02.010	Mobilize Site Surveys	7-Day Workweek	15 14-Jul-18	28-Jul-18	Mobilize Site Surveys
02.02.020	Conduct Biological Field Surveys and Wetlands Surve	7-Day Workweek	4 29-Jul-18	01-Aug-18	Conduct Biological Field Surveys and Wetlands Survey
02.02.030	Conduct Bathymetric Survey	7-Day Workweek	4 29-Jul-18	01-Aug-18	Conduct Bathymetric Survey
02.02.040	Conduct Topo Survey/Pipeline Alignment Survey	7-Day Workweek	2 29-Jul-18	30-Jul-18	Conduct Topo Súrvey/Pipeline Alignment Survey
02.02.050	Produce Maps and Reports (Bio Resources/Wetlands	7-Day Workweek	10 02-Aug-18	11-Aug-18	Produce Maps and Reports (Big Resources/Wetlands Deliniation)
02.02.060	MILESTONE - Site Characterization Completed	7-Day Workweek	0	11-Aug-18	MILESTONE - Site Characterization Completed,
18-022.02.03 3 02.03.010	30% Design	7-Day Workweek	35 07-Feb-19	13-Mar-19	13-Mari-19, 18-022.02.03 30% Design
02.03.010	Engineering/Produce 30% Plans & Specs	7-Day Workweek	30 07-Feb-19*	08-Mar-19	Engineering/Produce 30% Plans & Specs
02.03.020	Produce Prelim Technical Plan	7-Day Workweek	30 07-Feb-19*	08-Mar-19	Produce Prelim Technical Plan
02.03.030	Produce 30% Design Report	7-Day Workweek	30 07-Feb-19*	08-Mar-19	Produce 30% besign Report
02.03.040	MILESTONE - Submit 30% Design Report for CRC F	7-Day Workweek	0	08-Mar-19	Interview, and the submit so the second s
02.03.050	CRC Review of 30% Design Report	7-Day Workweek	5 09-Mar-19	13-Mar-19	CRC Review of 30% Design Report
02.03.060	MILESTONE - 30% Design Report Approved	7-Day Workweek	0	13-Mar-19	MILESTONE - 30% Design Report Approved,
18-022.02.04	Agency Pre-Application Meeting	7-Day Workweek	65 14-Mar-19	17-May-19	T7-May-19, 18-022,02.04 Agericy Pre-Application Meeting
02.04.010	Prepare Prelim Project Description Presentation	7-Day Workweek	5 14-Mar-19	18-Mar-19	Prepare Prejim Project Description Presentation
02.04.020	Setup Meetings w/ Involved Agencies/Meet	7-Day Workweek	60 19-Mar-19	17-May-19	Setup Meetings w/ Involved Agencies/Meet
02.04.030	MILESTONE - Agency Meetings Completed	7-Day Workweek	0	17-May-19	MILESTONE - Agency Meetings Completed,
18-022.02.05		7-Day Workweek	20 18-May-19	06-Jun-19	06-Jun-19, 18-022.02.05 6D % Design
02.05.010	Revise Plans & Specs Per Agency Meetings	7-Day Workweek	5 18-May-19	22-May-19	Revise Plans & Specs Per Adency Meetings
02.05.020	Produce Project Execution Plan	7-Day Workweek	10 23-May-19	01-Jun-19	Propuse Project Execution Plan
02.05.030	MILESTONE - Submit 60% Design Package for CRC	7-Day Workweek	0	01-Jun-19	MILESTONE - Submit 60% Design Package for CRCRevie
02.05.040	CRC Review of 60% Design	7-Day Workweek	5 02-Jun-19	06-Jun-19	CRC Review of 60% Design
02.05.050	MILESTONE - 60% Design	7-Day Workweek	0	06-Jun-19	MILESTONE -60% Design Approved,
	3 11	7-Day Workweek	145 07-Jun-19	29-Oct-19	29-Oct-19; 18-022.02.06 Print
02.06.010	Primary Permit Application Produce CSLC Application	7-Day Workweek 7-Day Workweek	5 07-Jun-19	11-Jun-19	Produce CSLC Application
			0		MILESTONE - Submit C\$LC Application,
02.06.020	MILESTONE - Submit CSLC Application	7-Day Workweek	-	11-Jun-19	CSLC Review - Incomplete/Questions
02.06.030	CSLC Review - Incomplete/Questions	7-Day Workweek	10 12-Jun-19	21-Jun-19	
02.06.040	Respond to CSLC Questions/CSLC Review	7-Day Workweek	130 22-Jun-19	29-Oct-19	Respond to CSLC Questions/
02.06.050	MILESTONE - CSLC Application Deemed Complete	7-Day Workweek	0	29-Oct-19	MILESTONE - CSLCAppica
	Produce/Certify MND	7-Day Workweek	103 30-Oct-19	09-Feb-20	US-Feb-2
02.07.010	Administrative MND Production - In-House	7-Day Workweek	10 30-Oct-19	08-Nov-19	Administrative MND Produ
02.07.020	MILESTONE - Draft MND Released	7-Day Workweek	0	08-Nov-19	MILESTONE + Draft MND
02.07.030	Draft MND Preparation	7-Day Workweek	10 09-Nov-19	18-Nov-19	Fig. Draft WND Preparation
02.07.040	MILESTONE - MND Ready for Certification	7-Day Workweek	0	18-Nov-19	MILESTONE - MND Rea
02.07.050	CSLC Hearing Process	7-Day Workweek	83 19-Nov-19	09-Feb-20	CÂLC He

				C		SE OCEAN OUT																	L123 P Data Da		
# Activity	/ ID	Activity Name	Calendar	Original Duration	Start	Finish	Qtr 3,			r 4, 20			1, 2019			2, 2019		Qtr 3,			Qtr 4, 2			, 2020	
7	02.07.060	MILESTONE - MND Certified	7-Day Workweek	0		09-Feb-20	Jul Au	ig Sep	o Oct	Nov	Dec	Jan	Feb 1	Mar .	Apr N	May J	Jun J	Jul Au	g Se	p Oct	Nov	Dec		eb Ma	
3			7-Day Workweek		30-Oct-19	16-Feb-20															_			▼ 16-F	
	02.08.010	her Agency Applications ACOE Permitting Process	7-Day Workweek		30-Oct-19	16-Feb-20																	1 1		DEF
	02.08.010	MILESTONE - ACOE 404 Permit Issued		0		16-Feb-20	_													1		:	. C		
			7-Day Workweek		30-Oct-19	16-Feb-20 16-Feb-20															-			CCC	
-	02.08.030	CCC CDP Permitting Process	7-Day Workweek	110		16-Feb-20 16-Feb-20														1		1	1 1	MILI	
	02.08.040	MILESTONE - CCC CDP Certification	7-Day Workweek																				F		
	02.08.050	Other Applications	7-Day Workweek		30-Oct-19	16-Feb-20																1	1	Othe	
	02.08.060	MILESTONE - Other Permits Issued	7-Day Workweek	0		16-Feb-20																1.		🕈 MILI	-81
		nissioning/Construction	7-Day Workweek		27-Dec-19	11-May-20																			
	18-022.03.01 Mo		7-Day Workweek		27-Dec-19	11-Feb-20																11	1	11-Fe	
	03.01.020	Produce Contractor Work Plan	7-Day Workweek		27-Dec-19	09-Feb-20																	: c	Produ	
	03.01.030	Produce Mitigation Monitoring Plan	7-Day Workweek		27-Dec-19	09-Feb-20																-	: :	Produ	
	03.01.040	Perform Seafloor Debris Survey	7-Day Workweek		10-Feb-20	11-Feb-20																	1 1	Perfo	
	18-022.03.02 Off	fshore Work	7-Day Workweek	6	17-Feb-20	22-Feb-20																		W 22-	
	03.02.010	Mobilization	7-Day Workweek	1	17-Feb-20	17-Feb-20										1								Mot	
	03.02.020	Recover Intake Structures	7-Day Workweek	4	18-Feb-20	21-Feb-20																	- F	-I Rec	cov
	03.02.030	Demobilization	7-Day Workweek	1	22-Feb-20	22-Feb-20																		H De	mģt
	18-022.03.03 On	nshore Work	7-Day Workweek	53	17-Feb-20	09-Apr-20																		-	-
	03.03.010	Mobilization	7-Day Workweek	5	17-Feb-20	21-Feb-20																		Mo	
	03.03.020	Strip Concrete Vault - Piping/Fencing/Electric	7-Day Workweek	1	22-Feb-20	22-Feb-20																1		Str	ip C
	03.03.030	Casing and Pipeline Decommissioning	7-Day Workweek	15	23-Feb-20	08-Mar-20																	1 1	-	Cas
	03.03.040	Pipeline Recovery and Removal	7-Day Workweek	15	09-Mar-20	23-Mar-20																	1	- F	g je
	03.03.050	Vault Removal and Seawall Construction	7-Day Workweek	15	24-Mar-20	07-Apr-20																	1 1		-
	03.03.060	MILESTONE - Onshore Work Completed	7-Day Workweek	0)	07-Apr-20																	1		5
	03.03.070	Demobilization	7-Day Workweek	2	08-Apr-20	09-Apr-20															1	1	1		F
	18-022.03.04 Fin	nal Surveys	7-Day Workweek	2	10-Apr-20	11-Apr-20					1												1		
	03.04.040	Perform Seafloor Debris Survey	7-Day Workweek	2	10-Apr-20	11-Apr-20			1		1 1		- 1	- 1									1 1		÷
	03.04.050	MILESTONE - Offshore Work Completed	7-Day Workweek	0	1	11-Apr-20																	1		Ē
	18-022.03.05 Fin	nal Report / As-Builts	7-Day Workweek	30	12-Apr-20	11-May-20																	1 1		Г
	03.04.010	Develop Final Report / As-Builts	7-Day Workweek		12-Apr-20	11-May-20																	+		-۴
	03.04.020	Deliver Final Report / As-Builts	7-Day Workweek	0		11-May-20																			
	Actual Level of Effort	Remaining Work Milestone Critical Remaining Work				ARY SCHEDULE 5 - 23-Oct-19																		Page	e 2

Attachment 2 –

Oilfield Environmental & Compliance, Inc. Analytical Results (April 2019)

		SAMPLE SUI	MMADV						
Ventura CA, 93003 Project Manager: Jenn Leighton 04/20/2019 19:01 SAMPLE SUMMARY									
1861 Knoll Dr.		5	awater Intake, Ventura		1901882 04/20/2019 19:01				
Padre Associates-Ventura		Project: Gr			WO & Reported:				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Page 2 of 25

		SAMPLE SUI	MMADV						
Ventura CA, 93003 Project Manager: Jenn Leighton 04/20/2019 19:01 SAMPLE SUMMARY									
1861 Knoll Dr.		5	awater Intake, Ventura		1901882 04/20/2019 19:01				
Padre Associates-Ventura		Project: Gr			WO & Reported:				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Page 2 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003		b			ntake, Ventura			WO & R 04/20/201	1901882	
ANALYTICAL REPORT FOR SAMPLES 1901882-01 (Water) GRUBB-SEA-041019										
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Microbiological Parameters by CA	Dept. of Fish	and Gar	ne							
Bioassay 96 Hour Screen	Pass			Ī	B9D0381	04/12/19	04/12/19	Polisini & Miller (CDFG 1988)	LC50	
Fotal Metals by CVAA										
Mercury	ND	0.00020	mg/L	1	B9D0398	04/15/19	04/15/19	EPA 7470A		
Fotal Metals by ICP										
Antimony	ND	0.050	mg/L	1	B9D0340	04/11/19	04/12/19	EPA 6010B		
Arsenic	ND	0.040	n	•1	57	4	u.	17		
Barium	0.19	0.010	n		17	-1	17	17		
Beryllium	ND	0.010	n	ч.	12	- 11	11	12		
Cadmium	ND	0.0050	n	4	11	-	11	0		
Chromium	ND	0.010	"	"	17		u.	U.		
Cobalt	ND	0.010	n		32		u	17		
Copper	ND	0.010	n	9.	u.		u.	u.		
.ead	ND	0.010	п	ч	0	ч	0	0		
Molybdenum	ND	0.010	п	е		н	0	n		
Nickel	ND	0.010	п	п.	11	. n	11	и		
Selenium	ND	0.050	n	"		-	17	u		
Silver	ND	0.010	n	•	11	ч	u.	17		
Thallium	ND	0.020	п	н	п		u.	11		
/anadium	ND	0.050	п		51			0		
Zine	0.70	0.050	n	"	и	ч	17	u.		
General Chemistry Parameters by	EPA or APH	A Standa	rd Method	s						
он @ 25 C	7.48	0.10	pH Units	I	B9D0403	04/15/19	04/15/19	EPA 9040B/SM4500 H- B	HT-pH	
oH Sample Temperature During Analysis	23	1.0	°C		u	ч		EPA 170.1/SM 2550B		
Cyanide, reactive	ND	0.100	mg/L	*1	B9D0328	04/11/19	04/11/19	SW846. 7.3		
sulfide, reactive	ND	20.0	n	n	B9D0326	n	11	SW 846 7.3		
lashpoint	>212	72	°F	4	B9D0482	04/17/19	04/17/19	EPA 1010		
Fotal Oil & Grease	ND	5.0	mg/L		B9D0442	04/16/19	04/16/19	EPA 1664		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Client Connect:	client.oec.com\reports	TEL: (805) 922-4772
307 Roemer Way, Suite 300, Santa Maria, CA 93454		www.oecusa.com	FAX: (805) 925-3376

Page 3 of 25

Oilfield Environmental & Compliance, Inc.

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003			t Number:	Grubb Leas Seawater Ir Jenn Leigh	ntake, Ventura	ŝ			WO & Reported: 1901882 04/20/2019 19:01		
				01 (Water EA-041019							
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Volatile Organic TPH by GC/FID											
TPH Gasoline (C4-C12)	ND	50	ug/L	L	B9D0374	04/12/19	04/13/19	EPA 8015M			
Surrogate: 4-Bromofluorohenzene		82.1 %	(47 - 1	155)	"	"	"	"			
Semi-Volatile Organic TPH by GC	/FID										
TPH Diesel (C13-C22)	ND	0.052	mg/L	I	B9D0339	04/11/19	04/12/19	EPA 8015M			
TPH Motor Oil (C23-C40)	ND	0.10	n	•1	11	4	17	17			
Surrogate: o-Terphenyl		93.3 %	(42 - 1	(53)	"	"	"	"			
Volatile Organic Compounds by G	CMS								R-07		
Benzene	ND	200	uаЛ	400	B9D0445	04/16/19	04/16/19	EPA 8260B	IX-07		
Bromobenzene	ND	200	ug/L "	400	B9D0445	04/10/19	04/10/19	EPA 8200B			
Bromochloromethane	ND	200	n								
Bromodichloromethane	ND	200	n	"				17			
Bromoform	ND	200	п	4			17	12			
Bromomethane	ND	200	n	e							
n-Butylbenzene	ND	200	n			"	17				
sec-Butylbenzene	ND	200	п	"		"	17	17			
tert-Butylbenzene	ND	200	n	4	N.	4	17	17			
Carbon tetrachloride	ND	200	п			а	0	12			
Chlorobenzene	ND	200	n		9		0	11			
Chloroethane	ND	200	n	4				17			
Chloroform	ND	200		•1	v	"	u.	v			
Chloromethane	ND	200	п	"	9			17			
2-Chlorotoluene	ND	200	n		0		0	11			
4-Chlorotoluene	ND	200	n	н	n		11	11			
Dibromochloromethane	ND	200	п	*1	N.	-1		17			
1,2-Dibromo-3-chloropropane	ND	400	**	"	и		17	17			
1,2-Dibromoethane (EDB)	ND	200	п		v	"	11	12			
Dibromomethane	ND	200	n	н	11	u.	0	0			
1,2-Dichlorobenzene	ND	200	n		π	ч	11				
1,3-Dichlorobenzene	ND	200	n	•	м		u.				
1,4-Dichlorobenzene	ND	200	n		N		v	u.			
Dichlorodifluoromethane	ND	200	"	"	v	ч	v	IF.			
1,1-Dichloroethane	ND	200	n		u			11			
1,2-Dichloroethane	ND	200	п	н	11	н		U			
1,1-Dichloroethene	ND	200	n	"	٩r	*1	11	17			
cis-1,2-Dichloroethene	ND	200	n	9	Υ.	ч		17			
trans-1,2-Dichloroethene	ND	200	n	9	9	. 4	11	12			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Client Connect:	client.oec.com\reports	TEL: (805) 922-4772
307 Roemer Way, Suite 300, Santa Maria, CA 93454		www.oecusa.com	FAX: (805) 925-3376

Page 4 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Knoll Dr. Project Number: Seawater Intake, Ventura								
				01 (Water EA-041019					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by G	C/MS (Contin	ued)							R-07
1,2-Dichloropropane	ND	200	ug/L	400	B9D0445	04/16/19	04/16/19	EPA 8260B	
1,3-Dichloropropane	ND	200	n	ч	11	ч			
2,2-Dichloropropane	ND	200	n	a	u	ч	0	D.	
I,1-Dichloropropene	ND	200	n		u.	ч	11	11	
cis-1,3-Dichloropropene	ND	200	п	e.	ч	м	17	12	
rans-1,3-Dichloropropene	ND	200	n	"	N	ч	17	17	
Ethylbenzene	ND	200	п	4	11	ч	11	11	
Hexachlorobutadiene	ND	200	п	н	11	н	11	12	
1-Isopropyl Toluene	ND	200	n	9	и	. 4	17	11	
lsopropylbenzene	ND	200	п		51	ч	17	u.	
Methylene chloride	ND	200	n	9	11	ч	11	12	
Naphthalene	ND	200	п	н	11	a a	11	11	
n-Propylbenzene	ND	200	n		n	ч	11	u.	
Styrene	ND	200	n	2	N	ч	11	u.	
1,1,1,2-Tetrachloroethane	ND	200	n	1	v	ч	17	11	
1,1,2,2-Tetrachloroethane	ND	200	.n.	ч	9	<u>.</u>	11	0	
Tetrachloroethene (PCE)	ND	200	п	n.	9	ч	0	Ω.	
Toluene	ND	200	n	9	u.	ч	11	11	
1,2,3-Trichlorobenzene	ND	200	п	я	м	ч	17	v	
1,2,4-Trichlorobenzene	ND	200	n	ч	м	ч	17	17	
1,1,1-Trichloroethane	ND	200	n		11	ч	0	2	
1,1,2-Trichloroethane	ND	200	п	2	9	ч	11	11	
Trichloroethene (TCE)	ND	200	п	я.	π	м	11	11	
Frichlorofluoromethane	ND	200	н		м		17		
1,2,3-Trichloropropane	ND	200	n	9	M	ч	17	11	
1,2,4-Trimethylbenzene	ND	200	п	e.	n	Ξu	n	Ω.	
,3,5-Trimethylbenzene	ND	200	п	ч	u		u.	0	
Vinyl chloride	ND	200	n	ũ.	sr	ч	17	u.	
Kylenes (total)	ND	200	n	9	м	ч	17	17	
Surrogate: Dibromofluoromethane		102 %	(83 -	119)	"	"	"	"	
Surrogate: Toluene-d8		99.0 %	(69 -	and the second sec	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	(79 -	125)	"	"	n	"	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Client Connect:	client.oec.com\reports	TEL: (805) 922-4772
307 Roemer Way, Suite 300, Santa Maria, CA 93454		www.oecusa.com	FAX: (805) 925-3376

Page 5 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003			WO & Reported: 1901882 04/20/2019 19:01						
				01 (Water EA-041019					
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Organochlorine Pesticides by GC	C/ECD/ECD								
alpha-BHC	ND	0.11	ug/L	I	B9D0441	04/16/19	04/16/19	EPA 8081A	
alpha-Chlordane	ND	0.11	n	"	11		11		
Aldrin	ND	0.11	n	a	11	41	0		
beta-BHC	ND	0.11	n	"	11	ч		8	
delta-BHC	ND	0.11	10	ч	м	ч		11	
4,4´-DDD	ND	0.11	**	"	и	9	u.	n	
4,4´-DDE	ND	0.11	n	ч	11	ч	0	n	
4,4′-DDT	ND	0.11	п	н	0	u.	0	11	
Dieldrin	ND	0.11	n	9	и	.91	ш	11	
Endosulfan I	ND	0.11	n	9	M	*1	u	u.	
Endosulfan II	ND	0.11	n	9	11	4	11	u.	
Endosulfan sulfate	ND	0.11	п	α.	n	ч		n	
Endrin	ND	0.11	п	н.	11	ч	11	u	
Endrin aldehyde	ND	0.11	n	2	N.	41	11	u.	
Endrin ketone	ND	0.11	н	1	W	*1	11	u.	
gamma-BHC	ND	0.11	.11	41	11		11	0	
gamma-Chlordane	ND	0.11	п	n.	n	ч	11	u	
leptachlor	ND	0.11	п	9	u.	-	11.	u.	
Heptachlor epoxide	ND	0.11	н	91	м	*1	17	w	
Methoxychlor	ND	0.11	n	ч	м	1	17		
Chlordane (tech)	ND	0.57	п	4	19	41	0	0	
Toxaphene	ND	0.57	п	1	17	-	11	u.	
Surrogate: Decachlorobiphenyl		104 %	(10-	202)	"	"	"	"	
Surrogate: 2,4,5,6 Tetrachloro-m-xvlene	2	102 %	(10-	145)	"	"	"		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Page 6 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003		WO & Reported: 1901882 04/20/2019 19:01								
1901882-01 (Water) GRUBB-SEA-041019										
Analyte	Result	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Polychlorinated Biphenyls by GC/EC	C D ND	0.57	/I							
					B9D0441	04/16/19	04/16/19	EPA 8082		
PCB-1221	ND	0.57	ug/L "	1 9	B9D0441 "	04/16/19 .v	04/16/19 "	EPA 8082		
			1000	1 9 0						
PCB-1221	ND	0.57	n		11		11			
PCB-1221 PCB-1232 PCB-1242	ND ND	0.57 0.57	n		0 0	u u	n n	17 17		
PCB-1221 PCB-1232 PCB-1242 PCB-1248	ND ND ND	0.57 0.57 0.57	n n n	4	9 9 9	a a u	и 11 11	n n		
PCB-1221 PCB-1232	ND ND ND ND	0.57 0.57 0.57 0.57	n n n	4 4 4	52 11 11 11	9 19 19	0 0 11 11	17 17 17		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Page 7 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Project: Grubb Lease Project Number: Seawater Intake, Ventura Project Manager: Jenn Leighton crobiological Parameters by CA Dept. of Fish and Game - Quality Control								WO & Reported: 1901882 04/20/2019 19:01	
Microbio	logical Parameters b	y CA	Dept. (of Fish :	and Gai	ne - Qua	ality Cor	ntrol		
Analyte	Result RL Units Spike Source %REC %REC RPD Level Result Limits								RPD Limit	Notes
Batch B9D0381 - Polisini & Miller (CD	FG 1988) Preparation: I	Bio/Mi	ero Prep	04/12/19	9 11:03					
Blank (B9D0381-BLK1) Bioassay 96 Hour Screen	Pass	ŀ	Analyzed:	04/12/19	11:03					LC50
Blank (B9D0381-BLK2) Bioassay 96 Hour Screen	Analyzed: 04/12/19 11:03 Pass						LC50			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Page 8 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Project: Grubb Lease Project Number: Seawater Intake, Ventura Project Manager: Jenn Leighton									WO & Reported: 1901882 04/20/2019 19:01	
	Total Me	tals by G	CVAA ·	- Qualit	y Contr	ol					
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B9D0398 - EPA 7470A Prepa	aration: EPA 7470A Prep	04/15/19	08:11								
Blank (B9D0398-BLK1) Mercury	ND	ہ 0.00020		04/15/19	15:01						
LCS (B9D0398-BS1) Mercury	0.00950	/ 0.00020	\nalyzed: mg/L	04/15/19 0.0100	14:57	95.0	85-115				
LCS Dup (B9D0398-BSD1) Mercury	0.00963	م 0.00020		04/15/19 0.0100	14:59	96.3	85-115	1.32	20		
Duplicate (B9D0398-DUP1) Mercury	Source: 1901882-01 ND	ہ 0.00020		04/15/19	15:10 ND				20		
Matrix Spike (B9D0398-MS1) Mercury	Source: 1901890-03 0.00795	ہ 0.00020	Sec. 1	04/15/19 0.0100	15:12 0.000208	77.4	75-125				
Matrix Spike Dup (B9D0398-MSD1) Mercury	Source: 1901890-03 0.00904	/ 0.00020		04/15/19	15:14 0.000208	88.4	75-125	12.9	20		
Post Spike (B9D0398-PS1) Mercury	Source: 1901914-01 5.05	1	Lnalyzed: ug/L	04/15/19 5.00	15:16 0.0149	101	85-115				

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Page 9 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Pro Pro		WO & Reported 1901882 04/20/2019 19:0							
	Total M	etals by	ICP -	Quality	Contro	1				
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B9D0340 - EPA 6010B	Preparation: EPA 3010A 04/1	/19 10:08								
Blank (B9D0340-BLK1)		A	analyzed:	04/12/19	17:37					
Antimony	ND	0.050	mg/L							
Arsenic	ND	0.040	"							
Barium	ND	0.010	ч							
Beryllium	ND	0.010	n							
Cadmium	ND	0.0050	ч							
Chromium	ND	0.010	м							
Cobalt	ND	0.010	4							
Copper	ND	0.010	ч							
Lead	ND	0.010	4							
Molybdenum	ND	0.010								
Nickel	ND	0.010	ч							
Selenium	ND	0.050	4							
Silver	ND	0.010	.9.1							
Thallium	ND	0.020	.0							
/anadium	ND	0.050	ч							
Zine	ND	0.050	ч							
LCS (B9D0340-BS1)		A	analyzed:	04/12/19	17:39					
Antimony	1.98	0.050	mg/L	2.00		99.0	80-120			
Arsenic	1.95	0.040		2.00		97.5	80-120			
Barium	1.95	0.010		2.00		97.4	80-120			
Beryllium	1.97	0.010	*	2.00		98.3	80-120			
Cadmium	2.00	0.0050	ч	2.00		100	80-120			
Chromium	1.94	0.010	ч	2.00		97.1	80-120			
Cobalt	2.01	0.010	ч	2.00		100	80-120			
Copper	1.96	0.010	9	2.00		98.2	80-120			
.ead	2.02	0.010	4	2.00		101	80-120			
Molybdenum	1.98	0.010	ч	2.00		98.8	80-120			
vickel	2.03	0.010	ч	2.00		101	80-120			
Selenium	1.92	0.050		2.00		96.2	80-120			
Silver	0.0975	0.010	ч	0.100		97.5	80-120			
Challium	1.95	0.020	ч	2.00		97.4	80-120			
Vanadium	1.88	0.050	ч	2.00		94.0	80-120			
line	1.98	0.050	41	2.00		99.0	80-120			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Client Connect:
 client.coec.com\reports

 307 Roemer Way, Suite 300, Santa Maria, CA 93454
 www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Page 10 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Pro Pro		WO & Reported: 1901882 04/20/2019 19:01							
	Total M	etals by	ICP -	Quality	Contro	L:				
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B9D0340 - EPA 6010B Pr	eparation: EPA 3010A 04/11	/19 10:08								
.CS Dup (B9D0340-BSD1)		A	analyzed:	04/12/19	17:42					
Antimony	1.99	0.050	mg/L	2.00		99.4	80-120	0.302	20	
Arsenic	1.95	0.040		2.00		97.4	80-120	0.0513	20	
Barium	1.95	0.010	ч	2.00		97.6	80-120	0.205	20	
Beryllium	1.96	0.010	"	2.00		98.2	80-120	0.102	20	
Cadmium	1.99	0.0050	*1	2.00		99.7	80-120	0.300	20	
Thromium	1.96	0.010	м	2.00		98.2	80-120	1.08	20	
lobalt	2.00	0.010	я.	2.00		100	80-120	0.299	20	
Copper	1.99	0.010	ч	2.00		99.4	80-120	1.16	20	
ead	2.01	0.010	"	2.00		101	80-120	0.248	20	
folybdenum	1.99	0.010		2.00		99.3	80-120	0.505	20	
lickel	2.02	0.010	ч	2.00		101	80-120	0.445	20	
elenium	1.94	0.050		2.00		96.8	80-120	0.674	20	
ilver	0.0988	0.010		0.100		98.8	80-120	1.32	20	
hallium	1.92	0.020	.0	2.00		96.2	80-120	1.24	20	
/anadium	1.91	0.050	ч	2.00		95.6	80-120	1.74	20	
line	1.97	0.050	ч	2.00		98.7	80-120	0.253	20	
Duplicate (B9D0340-DUP1)	Source: 1901859-01	A	analyzed:	04/12/19	17:57					
Antimony	ND	0.050	mg/L		ND				20	
Arsenic	ND	0.040			ND				20	
Barium	0.0244	0.010			0.0255			4.41	20	
Beryllium	ND	0.010	**		ND				20	
Cadmium	ND	0.0050	**		ND				20	
Thromium	ND	0.010	ч		ND				20	
Cobalt	ND	0.010	4		ND				20	
Copper	ND	0.010	*		ND				20	
ead	0.00950	0.010	.4		0.00710			28.9	20	QR-04
Aolybdenum	ND	0.010	.9		ND				20	
lickel	0.00590	0.010	*1		0.00570			3.45	20	
elenium	ND	0.050	**		ND				20	
ilver	ND	0.010	4		ND				20	
hallium	ND	0.020	ч		ND				20	
anadium	ND	0.050	ч		ND				20	
line	0.0520	0.050	**		0.0491			5.74	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Client Connect:	client.oec.com\reports	TEL: (805) 922-4772
307 Roemer Way, Suite 300, Santa Mai	ria, CA 93454	www.oecusa.com	FAX: (805) 925-3376

Page 11 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Pro Proj			& Reported 190188 /2019 19:0						
	Total M	etals by	ICP -	Quality	Contro	l				
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B9D0340 - EPA 6010B Prep	aration: EPA 3010A 04/11	/19 10:08								
Matrix Spike (B9D0340-MS1)	Source: 1901859-01	A	nalyzed:	04/12/19	17:44					
Antimony	2.05	0.050	mg/L	2.00	ND	102	67-135			
Arsenic	2.05	0.040	"	2.00	ND	103	76-137			
Barium	1.99	0.010	ч	2.00	0.0255	98.2	70-132			
Beryllium	2.01	0.010	"	2.00	ND	100	85-121			
Cadmium	1.98	0.0050	*1	2.00	ND	99.0	84-121			
Chromium	1.96	0.010	3 1 (2.00	ND	98.2	82-123			
Cobalt	1.98	0.010	9	2.00	ND	98.8	83-121			
Copper	2.02	0.010	ч.	2.00	ND	101	77-128			
Lead	1.96	0.010	*1	2.00	0.00710	97.7	79-121			
Molybdenum	2.02	0.010	u.	2.00	ND	101	59-142			
Nickel	1.99	0.010	ч	2.00	0.00570	99.2	82-121			
Selenium	2.02	0.050	*1	2.00	ND	101	51-154			
Silver	0.100	0.010	31.5	0.100	ND	100	78-132			
Fhallium	1.85	0.020	н	2.00	ND	92.6	67-129			
Vanadium	1.96	0.050	ч	2.00	ND	98.0	84-122			
Zine	2.02	0.050	4	2.00	0.0491	98.7	72-140			
Matrix Spike Dup (B9D0340-MSD1)	Source: 1901859-01	A	analyzed:	04/12/19	17:47					
Antimony	2.05	0.050	mg/L	2.00	ND	103	67-135	0.293	20	
Arsenic	2.05	0.040	*1	2.00	ND	103	76-137	0.0975	20	
Barium	2.00	0.010		2.00	0.0255	99.0	70-132	0.751	20	
Beryllium	2.02	0.010	*1	2.00	ND	101	85-121	0.447	20	
Cadmium	1.99	0.0050	ч	2.00	ND	99.3	84-121	0.252	20	
Chromium	1.96	0.010	91.0	2.00	ND	98.2	82-123	0.102	20	
Cobalt	1.98	0.010	*1	2.00	ND	99.0	83-121	0.152	20	
Copper	2.01	0.010	*1	2.00	ND	101	77-128	0.199	20	
Lead	1.97	0.010	41	2.00	0.00710	98.2	79-121	0.559	20	
Molybdenum	2.03	0.010		2.00	ND	101	59-142	0.346	20	
vickel	1.99	0.010	"	2.00	0.00570	99.3	82-121	0.151	20	
Selenium	2.02	0.050	*1	2.00	ND	101	51-154	0.0496	20	
Silver	0.100	0.010	41	0.100	ND	100	78-132	0.00	20	
Thallium	1.92	0.020	•	2.00	ND	96.1	67-129	3.76	20	
Vanadium	1.97	0.050	*1	2.00	ND	98.5	84-122	0.509	20	
Zine	2.03	0.050	*1	2.00	0.0491	98.8	72-140	0.148	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Client Connect:	client.oec.com\reports	TEL: (805) 922-4772
307 Roemer Way, Suite 300, Santa Maria, CA 93454		www.oecusa.com	FAX: (805) 925-3376

Page 12 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Proje Projec		WO & Reported: 1901882 04/20/2019 19:01							
	Total Met	tals by	ICP - O	Quality	v Control					
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B9D0340 - EPA 6010B P	reparation: EPA 3010A 04/11/1	9 10:08								
Post Spike (B9D0340-PS1)	Source: 1901859-01 Analyzed: 04/12/19 17:49									
Antimony	2.08		mg/L	2.00	-0.00235	104	75-125			
Arsenic	2.08		11	2.00	0.00254	104	75-125			
Barium	2.04		3 U 2	2.00	0.0249	101	75-125			
Beryllium	2.05		ч.	2.00	-0.0000978	103	75-125			
Cadmium	2.02		4	2.00	-0.000196	101	75-125			
Chromium	2.01			2.00	0.00313	100	75-125			
Cobalt	2.01		9	2.00	0.000196	101	75-125			
Copper	2.06		4	2.00	0.00225	103	75-125			
ead	2.01		4	2.00	0.00694	100	75-125			
Molybdenum	2.04		9	2.00	0.00450	102	75-125			
Nickel	2.02		ч	2.00	0.00557	101	75-125			
Selenium	2.05		ч	2.00	0.0107	102	75-125			
Silver	0.103		91	0.100	-0.000587	103	75-125			
Thallium	1.87		41	2.00	0.000489	93.4	75-125			
/anadium	2.01		4	2.00	0.00196	100	75-125			
Zine	2.06		4	2.00	0.0480	101	75-125			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Page 13 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	5	ect Num	ber: Sea	bb Lease water Inta 1 Leighto	ake, Ventu	ra			WO & Reported: 1901882 04/20/2019 19:01	
General Cho	emistry Parameters b	•	or APF	IA Stan Spike	dard M	ethods - %REC	- Quality %REC	Contro	RPD	Notes
Anaryte	Result	KL	Onits	Level	Result	JUKEC	Limits	ICI D	Limit	Notes
Batch B9D0326 - SW 846 7.3 Prepa	ration: EPA 9030_04/11/1	9 08:26								
Blank (B9D0326-BLK1)		Ŧ	Analyzed:	04/11/19 0)8:26					
Sulfide, reactive	ND	20.0	mg/L							
LCS (B9D0326-BS1)		Analyzed: 04/11/19 08:26								
Sulfide, reactive	20.5	20.0	mg/L	32.0		64.1	32-103			
Duplicate (B9D0326-DUP1)	Source: 1901882-01	Analyzed: 04/11/19 08:26								
Sulfide, reactive	ND	20.0	mg/L		ND				20	
Batch B9D0328 - SW846. 7.3 Prepa	ration: EPA 9030 04/11/1	9 08:26								
Blank (B9D0328-BLK1)		F	Analyzed:	04/11/19 ()8:26					
Cyanide, reactive	ND	0.100	mg/L							
LCS (B9D0328-BS1)		A	Analyzed:	04/11/19 0)8:26					
Cyanide, reactive	0.242	0.100	mg/L	1.60		15.1	5-42			
Duplicate (B9D0328-DUP1)	Source: 1901882-01	F	Analyzed:	04/11/19 0)8:26					
Cyanide, reactive	ND	0.100	mg/L		ND				20	
Batch B9D0403 - EPA 9040B/SM450	H+ B Preparation: EPA	9040B p	H Prep	04/15/19	08:47					
LCS (B9D0403-BS1)		1	Analyzed:	04/15/19 0	08:47					
ьН @ 25 C	3.96	0.10	pH Units	4.00		99.0	90-110			
LCS (B9D0403-BS2)		I	Analyzed:	04/15/19	08:47					
рН @ 25 C	7.00	0.10	pH Units	7.00		100	90-110			
LCS (B9D0403-BS3)		F	Analyzed:	04/15/19	08:47					
oH @ 25 C	10.02	0.10	pH Units	10.0		100	90-110			
LCS (B9D0403-BS4)		F	Analyzed:	04/15/19 0)8:47					
oH @ 25 C	12.00	0.10	pH Units	12.0		100	90-110			
Duplicate (B9D0403-DUP1)	Source: 1901838-02	-	\nalyzed:	04/15/19)8:47					
oH @ 25 C	7.70		pH Units		7.73			0.389	10	
oH Sample Temperature During Analysis	23.5	1.0	°C		23.9			1.69	10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Client Connect:	client.oec.com\reports	TEL: (805) 922-4772
307 Roemer Way, Suite 300, Santa Maria, CA 93454		www.oecusa.com	FAX: (805) 925-3376

Page 14 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Proje Proje	WO & Reported: 1901882 04/20/2019 19:01							
General Chemi	stry Parameters by	y EPA or Al	PHA Stand	lard M	lethods -	- Quality	or Contro	ol	
Analyte	Result	RL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B9D0403 - EPA 9040B/SM4500H+	B Preparation: EPA	9040B pH Prep	o 04/15/19 0	8:47					
Duplicate (B9D0403-DUP2) So	urce: 1901862-01	Analyze	d: 04/15/19 08	3:47					
bH @ 25 C	7.63	0.10 pH Uni	ts	7.70			0.913	10	
oH Sample Temperature During Analysis	23.4	1.0 °C		23.4			0.00	10	
Blank (B9D0442-BLK1) Fotal Oil & Grease	EPA 1664 Oil and Grund G		d: 04/16/19 09	9:30					
LCS (B9D0442-BS1) Fotal Oil & Grease	38.8	Analyze 5.0 mg/L	d: 04/16/19 09 40.0	9:30	97.0	78-114			
L CS Dup (B9D0442-BSD1) Total Oil & Grease	33.2	Analyze 5.0 mg/L	d: 04/16/19 09 40.0	9:30	83.0	78-114	15.6	18	
Batch B9D0482 - EPA 1010 Preparation	EPA 1010 Prep 04/17	/19 08:55							
Blank (B9D0482-BLK1) Flashpoint	>212	Analyze 72 °F	d: 04/17/19 08	3:55					
LCS (B9D0482-BS1) Flashpoint	83	Analyze 72 °F	d: 04/17/19 08 81.0	3:55	103	95-105			
Duplicate (B9D0482-DUP1) So Flashpoint	urce: 1901882-01 >212	Analyze 72 °F	d: 04/17/19 08	3:55 >212				10	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Client Connect:	client.oec.com\reports	TEL: (805) 922-4772
307 Roemer Way, Suite 300, Santa Maria, CA 93454		www.oecusa.com	FAX: (805) 925-3376

Page 15 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Project: Grubb Lease Project Number: Seawater Intake, Ventura Project Manager: Jenn Leighton Volatile Organic TPH by GC/FID - Quality Control									
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limít	Notes
Batch B9D0374 - EPA 8015M Preparati	ion: EPA 5030B VOCGC	04/12	2/19 10:3	34						
Blank (B9D0374-BLK1)		A	alyzed:	04/13/19	02:34					
TPH Gasoline (C4-C12)	ND	50	ug/1.							
Surrogate: 4-Bromofluorohenzene	102		n	125		81.8	47-155			
LCS (B9D0374-BS1)		A	analyzed:	04/13/19	01:36					
TPH Gasoline (C4-C12)	368	50	ug/1.	500		73.5	67-151			
Surrogate: 4-Bromofluorobenzene	110		n	125		87.6	47-155			
LCS Dup (B9D0374-BSD1)		A	alyzed:	04/13/19	02:05					
TPH Gasoline (C4-C12)	424	50	ug/L	500		84.7	67-151	14.2	20	
Surrogate: 4-Bromofluorobenzene	114		"	125		91.1	47-155			
Duplicate (B9D0374-DUP1) S	ource: 1901881-01RE1	A	alyzed:	04/13/19	04:58					
TPH Gasoline (C4-C12)	ND	50	ug/L		ND				20	
Surrogate: 4-Bromofluorobenzene	100		"	125		80.2	47-155			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Page 16 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003		S.	ber: Sea		ake, Ventu	ira				& Reported: 1901882 /2019 19:01
	Semi-Volatile Org	anic TP	H by O	GC/FID	- Quali	ty Conti	rol			
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B9D0339 - EPA 8015M F	Preparation: EPA 3510C 04/11	1/19 10:03	7							
Blank (B9D0339-BLK1)		- F	alyzed	: 04/11/19	17:26					
TPH Diesel (C13-C22)	ND	0.050	mg/L							
TPH Motor Oil (C23-C40)	ND	0.10	-							
Surrogate: o-Terphenyl	0.0828		"	0.100		82.8	42-153			
LCS (B9D0339-BS1)		I	analyzed	04/11/19	16:58					
TPH Diesel (C13-C22)	0.776	0.050	mg/L	1.00		77.6	24-105			
TPH Motor Oil (C23-C40)	1.04	0.10	н	1.00		104	70-130			
	0.102		"	0.100		102	42-153			
Surrogate: o-Terphenyl	0.705									
Surrogate: o-Terphenyl LCS Dup (B9D0339-BSD1)	0.702	F	analyzed	04/11/19	17:12					
	0.622	0.050	nalyzed: mg/L	: 04/11/19 1.00	17:12	62.2	24-105	22.0	20	QR-02
LCS Dup (B9D0339-BSD1)					17:12	62.2 108	24-105 70-130	22.0 3.95	20 20	QR-02

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com

TEL: (805) 922-4772 FAX: (805) 925-3376

Page 17 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Project Number: Seawater Intake, Ventura Project Manager: Jenn Leighton									& Reported: 1901882 /2019 19:01
	Volatile Organic Co	ompou	nds by	GC/MS	8 - Qual	ity Cont	rol			
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B9D0445 - EPA 8260B Prepara	ion: EPA 5030B VOCG	CMS 04	/16/19 0	9:25						
Blank (B9D0445-BLK1)		A	analyzed:	04/16/19	12:28					
Benzene	ND	0.50	ug/1.							
Bromobenzene	ND	0.50	-							
Bromochloromethane	ND	0.50	u.							
3romodichloromethane	ND	0.50	ч							
Bromoform	ND	0.50	ч							
Bromomethane	ND	0.50	м.							
n-Butylbenzene	ND	0.50	ч							
ec-Butylbenzene	ND	0.50	ч							
ert-Butylbenzene	ND	0.50	*1							
Carbon tetrachloride	ND	0.50	9							
Chlorobenzene	ND	0.50	ч							
Chloroethane	ND	0.50	ч							
Chloroform	ND	0.50	.90							
Chloromethane	ND	0.50	9							
2-Chlorotoluene	ND	0.50	ч							
-Chlorotoluene	ND	0.50	ч							
Dibromochloromethane	ND	0.50	U.							
,2-Dibromo-3-chloropropane	ND	1.0	4							
,2-Dibromoethane (EDB)	ND	0.50	4							
Dibromomethane	ND	0.50								
.2-Dichlorobenzene	ND	0.50	п							
.3-Dichlorobenzene	ND	0.50	ч							
,4-Dichlorobenzene	ND	0.50	ч							
Dichlorodifluoromethane	ND	0.50								
,1-Dichloroethane	ND	0.50	ч							
,2-Dichloroethane	ND	0.50	*1							
1,1-Dichloroethene	ND	0.50	.91							
ris-1,2-Dichloroethene	ND	0.50	и							
rans-1,2-Dichloroethene	ND	0.50	ч							
1,2-Dichloropropane	ND	0.50								
.3-Dichloropropane	ND	0.50	31							
2,2-Dichloropropane	ND	0.50	ч							
1,1-Dichloropropene	ND	0.50								
ris-1,3-Dichloropropene	ND	0.50								
rans-1,3-Dichloropropene	ND	0.50	u.							
Ethylbenzene	ND	0.50	•1							
Iexachlorobutadiene	ND	0.50	*1							
I-Isopropyl Toluene	ND	0.50	ч							
sopropylbenzene	ND	0.50	•							
Methylene chloride	ND	0.50	"							
Vaphthalene	ND	0.50								
n-Propylbenzene	ND	0.50								
in ropy to chizene	ND	0.50								

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Page 18 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Project: Grubb Lease Project Number: Seawater Intake, Ventura Project Manager: Jenn Leighton									WO & Reported: 1901882 04/20/2019 19:01		
Vol	atile Organic Co	ompou	nds by	GC/MS	6 - Qual	ity Cont	rol					
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch B9D0445 - EPA 8260B Preparation:	EPA 5030B VOCG	CMS 04	/16/19 0	9:25								
Blank (B9D0445-BLK1)		A	analyzed:	04/16/19	12:28							
1,1,1,2-Tetrachloroethane	ND	0.50	ug/1.									
1,1,2,2-Tetrachloroethane	ND	0.50	-									
Tetrachloroethene (PCE)	ND	0.50	ч									
Toluene	ND	0.50	•									
1,2,3-Trichlorobenzene	ND	0.50	*1									
1,2,4-Trichlorobenzene	ND	0.50	91.) -									
1,1,1-Trichloroethane	ND	0.50	4									
1,1,2-Trichloroethane	ND	0.50	*1									
Trichloroethene (TCE)	ND	0.50	*1									
Trichlorofluoromethane	ND	0.50										
1,2,3-Trichloropropane	ND	0.50	ч									
1,2,4-Trimethylbenzene	ND	0.50	*1									
1,3,5-Trimethylbenzene	ND	0.50	31.5									
Vinyl chloride	ND	0.50	4									
Xylenes (total)	ND	0.50	ч									
Surrogate: Dibromofluoromethane	12.6		п	12.5		101	83-119					
Surrogate: Toluene-d8	12.3		"	12.5		98.5	69-120					
Surrogate: 4-Bromofluorobenzene	13.5		n	12.5		108	79-125					
LCS (B9D0445-BS1)		A	analyzed:	04/16/19	09:57							
Benzene	8.74	0.50	ug/L	10.0		87.4	79-132					
Chlorobenzene	8.69	0.50		10.0		86.9	83-130					
1,1-Dichloroethene	9.03	0.50	-	10.0		90.3	62-147					
Toluene	8.69	0.50		10.0		86.9	71-133					
Trichloroethene (TCE)	9.24	0.50	91	10.0		92.4	79-140					
Surrogate: Dibromofluoromethane	12.9		n	12.5		103	83-119					
Surrogate: Toluene-d8	12.9		"	12.5		103	69-120					
Surrogate: 4-Bromofluorobenzene	13.9		"	12.5		111	79-125					
LCS Dup (B9D0445-BSD1)		A	nalyzed:	04/16/19	10:30							
Benzene	9.41	0.50	ug/L	10.0		94.1	79-132	7.38	20			
Chlorobenzene	9.34	0.50	"	10.0		93.4	83-130	7.21	20			
1,1-Dichloroethene	9.99	0.50	*1	10.0		99.9	62-147	10.1	20			
Toluene	8.77	0.50	*1	10.0		87.7	71-133	0.916	20			
Trichloroethene (TCE)	9.94	0.50		10.0		99.4	79-140	7.30	20			
Surrogate: Dibromofluoromethane	12.9			12.5		103	83-119					
Surrogate: Toluene-d8	11.7		11	12.5		93.4	69-120					
Surrogate: 4-Bromofluorobenzene	13.5		11	12.5		108	79-125					

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Client Connect:	client.oec.com\reports	TEL: (805) 922-4772
307 Roemer Way, Suite 300, Santa Maria, CA 93454		www.oecusa.com	FAX: (805) 925-3376

Page 19 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	5	ect Numl	ber: Sea	ibb Lease water Inta n Leighto	ake, Ventu	ıra			WO & Reported 1901882 04/20/2019 19:01		
	Volatile Organic Co	ompou	nds by	GC/MS	5 - Qual	ity Cont	rol				
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B9D0445 - EPA 8260B Pr	eparation: EPA 5030B VOCG	CMS 04	/16/19 0	9:25							
Duplicate (B9D0445-DUP1)	Source: 1901881-01	A	analyzed:	: 04/16/19	15:10						
Benzene	ND	0.50	ug/1.		ND				20		
Bromobenzene	ND	0.50	11		ND				20		
Bromochloromethane	ND	0.50	u -		ND				20		
Bromodichloromethane	ND	0.50	ч		ND				20		
Bromoform	ND	0.50	4		ND				20		
Bromomethane	ND	0.50	м		ND				20		
n-Butylbenzene	ND	0.50	4		ND				20		
ec-Butylbenzene	ND	0.50	"		ND				20		
ert-Butylbenzene	ND	0.50	ч		ND				20		
Carbon tetrachloride	ND	0.50			ND				20		
Chlorobenzene	ND	0.50	ч		ND				20		
Chloroethane	ND	0.50	ч		ND				20		
Chloroform	ND	0.50	м.		ND				20		
hloromethane	ND	0.50	- 11		ND				20		
-Chlorotoluene	ND	0.50	ч		ND				20		
-Chlorotoluene	ND	0.50	ч		ND				20		
Dibromochloromethane	ND	0.50	.0		ND				20		
,2-Dibromo-3-chloropropane	ND	1.0	4		ND				20		
,2-Dibromoethane (EDB)	ND	0.50	ч		ND				20		
Dibromomethane	ND	0.50			ND				20		
,2-Dichlorobenzene	ND	0.50	п		ND				20		
"3-Dichlorobenzene	ND	0.50	4		ND				20		
,4-Dichlorobenzene	ND	0.50	"		ND				20		
Dichlorodifluoromethane	ND	0.50	н		ND				20		
,1-Dichloroethane	ND	0.50	ч		ND				20		
,2-Dichloroethane	ND	0.50	-11		ND				20		
,1-Dichloroethene	ND	0.50			ND				20		
is-1,2-Dichloroethene	ND	0.50			ND				20		
rans-1,2-Dichloroethene	ND	0.50	ч		ND				20		
,2-Dichloropropane	ND	0.50	4		ND				20		
,3-Dichloropropane	ND	0.50			ND				20		
.,2-Dichloropropane	ND	0.50	ч		ND				20		
,1-Dichloropropene	ND	0.50			ND				20		
is-1,3-Dichloropropene	ND	0.50			ND				20		
rans-1,3-Dichloropropene	ND	0.50	- 11		ND				20		
thylbenzene	ND	0.50	ч		ND				20		
Iexachlorobutadiene	ND	0.50	4		ND				20		
-Isopropyl Toluene	ND	0.50	ч		ND				20		
sopropylbenzene	ND	0.50	"		ND				20		
Acthylene chloride	ND	0.50	*1		ND				20		
Japhthalene	ND	0.50			ND				20		
-Propylbenzene	ND	0.50			ND				20		
ityrene	ND	0.50	ч		ND				20		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Client Connect:	client.oec.com\reports	TEL: (805) 922-4772
307 Roemer Way, Suite 300, Santa Maria, CA 93454		www.oecusa.com	FAX: (805) 925-3376

Page 20 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Proje Projec	WO & Reported: 1901882 04/20/2019 19:01								
Analyte	Volatile Organic Co Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B9D0445 - EPA 8260B Prep	paration: EPA 5030B VOCGO	CMS 04	/16/19 0	9:25						
Duplicate (B9D0445-DUP1)	Source: 1901881-01	A	malyzed:	04/16/19	15:10					
1,1,1,2-Tetrachloroethane	ND	0.50	ug/1.		ND				20	
1,1,2,2-Tetrachloroethane	ND	0.50	"		ND				20	
Tetrachloroethene (PCE)	ND	0.50	ч		ND				20	
Toluene	ND	0.50			ND				20	
1,2,3-Trichlorobenzene	ND	0.50	*1		ND				20	
1,2,4-Trichlorobenzene	ND	0.50			ND				20	
1,1,1-Trichloroethane	ND	0.50	я.		ND				20	
1,1,2-Trichloroethane	ND	0.50	ч		ND				20	
Trichloroethene (TCE)	ND	0.50	*1		ND				20	
Trichlorofluoromethane	ND	0.50			ND				20	
1,2,3-Trichloropropane	ND	0.50	ч		ND				20	
1,2,4-Trimethylbenzene	ND	0.50	*1		ND				20	
1,3,5-Trimethylbenzene	ND	0.50	м.		ND				20	
Vinyl chloride	ND	0.50	9		ND				20	
Xylenes (total)	ND	0.50	4		ND				20	
Surrogate: Dibromofluoromethane	12.3		п	12.5		98.0	83-119			
Surrogate: Toluene-d8	12.8		"	12.5		102	69-120			
Surrogate: 4-Bromofluorobenzene	13.9		n	12.5		111	79-125			
Matrix Spike (B9D0445-MS1)	Source: 1901881-02	A	analyzed:	04/16/19	20:31					
Benzene	8.39	0.50	ug/L	10.0	ND	83.9	70-141			
Chlorobenzene	8.52	0.50	4	10.0	ND	85.2	86-124			QM-07
1,1-Dichloroethene	8.57	0.50		10.0	ND	85.7	61-143			
Toluene	8.18	0.50		10.0	ND	81.8	66-135			
Trichloroethene (TCE)	9.03	0.50	an an	10.0	ND	90.3	80-139			
Surrogate: Dibromofluoromethane	13.3			12.5		106	83-119			
Surrogate: Toluene-d8	12.4		11	12.5		99.4	69-120			
Surrogate: 4-Bromofluorobenzene	13.8		"	12.5		110	79-125			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Client Connect:	client.oec.com\reports	TEL: (805) 922-4772
307 Roemer Way, Suite 300, Santa Maria, CA 93454		www.oecusa.com	FAX: (805) 925-3376

Page 21 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	61 Knoll Dr. Project Number: Seawater Intake, Ventura								Project Number: Seawater Intake, Ventura							WO & Reporta 19018 04/20/2019 19:			
Organ	ochlorine Pesti	cides b	y GC/I	ECD/EO	CD - Qu	ality Co	ntrol												
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes									
Batch B9D0441 - EPA 8081A Preparation: E	PA 3510C 04/16/	19 09:19																	
Blank (B9D0441-BLK1)		A	malyzed:	04/16/19	16:58														
alpha-BHC	ND	0.10	ug/1.																
alpha-Chlordane	ND	0.10																	
Aldrin	ND	0.10	ч																
beta-BHC	ND	0.10	"																
ielta-BHC	ND	0.10	*1																
4,4'-DDD	ND	0.10	3 1 (
4,4'-DDE	ND	0.10	9																
4,4'-DDT	ND	0.10	-																
Dieldrin	ND	0.10	"																
Endosulfan I	ND	0.10																	
Endosulfan II	ND	0.10	ч																
Indosulfan sulfate	ND	0.10	*1																
Endrin	ND	0.10	29.5																
Endrin aldehyde	ND	0.10	н																
Indrin ketone	ND	0.10	ч																
amma-BHC	ND	0.10	-1																
amma-Chlordane	ND	0.10	0																
Heptachlor	ND	0.10	4																
leptachlor epoxide	ND	0.10	4																
Methoxychlor	ND	0.10																	
Chlordane (tech)	ND	0.50	п																
Foxaphene	ND	0.50	9																
Surrogate: Decachlorobiphenyl	0.220		п	0.250		88.0	10-202												
Surrogate: 2,4,5,6 Tetrachloro-m-xylene	0.0667		п	0.250		26.7	10-145												
LCS (B9D0441-BS1)		A	analyzed:	04/16/19	15:58														
lpha-BHC	0.130	0.10	ug/L	0.200		65.0	21-91												
lpha-Chlordane	0.149	0.10	"	0.200		74.6	37-99												
Aldrin	0.0893	0.10	4	0.200		44.6	16-87												
peta-BHC	0.155	0.10	ч	0.200		77.4	40-98												
lelta-BHC	0.155	0.10	-	0.200		77.6	45-104												
,4'-DDD	0.166	0.10	- 1	0.200		83.0	54-117												
,4'-DDE	0.160	0.10	н	0.200		80.1	46-112												
,4′-DDT	0.224	0.10	ч	0.200		112	57-124												
Dieldrin	0.165	0.10	*1	0.200		82.7	46-100												
Endosulfan I	0.157	0.10	-	0.200		78.6	38-104												
indosulfan II	0.174	0.10	-	0.200		87.0	54-110												
Endosulfan sulfate	0.205	0.10	*1	0.200		103	64-112												
Endrin	0.175	0.10	м	0.200		87.5	54-105												
indrin aldehyde	0.192	0.10		0.200		96.0	56-104												
Endrin ketone	0.191	0.10	41	0.200		95.5	61-106												
gamma-BHC	0.138	0.10	*1	0.200		69.2	26-94												
amma-Chlordane	0.145	0.10	.u.:	0.200		72.7	39-100												

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

	Client Connect:	client.oec.com\reports	TEL: (805) 922-4772
307 Roemer Way, Suite 300, Santa Maria, CA 93454		www.oecusa.com	FAX: (805) 925-3376

Page 22 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	Knoll Dr. Project Number: Seawater Intake, Ventura ra CA, 93003 Project Manager: Jenn Leighton									
	ochlorine Pesti	S.	•	08 20046		5.51 Language - 1			100121000	3-23
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B9D0441 - EPA 8081A Preparation: E	EPA 3510C 04/16/	19 09:19								
LCS (B9D0441-BS1)		A	nalyzed:	04/16/19	15:58					
Teptachlor	0.116	0.10	ug/1.	0.200		57.9	26-88			
Heptachlor epoxide	0.151	0.10		0.200		75.6	40-98			
Methoxychlor	0.247	0.10	u -	0.200		124	62-129			
Surrogate: Decachlorobiphenyl	0.241		"	0.250		96.3	10-202			
Surrogate: 2,4,5,6 Tetrachloro-m-xylene	0.0832		"	0.250		33.3	10-145			
LCS Dup (B9D0441-BSD1)		A	analyzed:	04/16/19	16:18					
alpha-BHC	0.127	0.10	ug/L	0.200		63.4	21-91	2.41	25	
alpha-Chlordane	0.150	0.10		0.200		75.1	37-99	0.644	25	
Aldrin	0.0893	0.10	4	0.200		44.6	16-87	0.0347	25	
octa-BHC	0.162	0.10	25	0.200		80.8	40-98	4.38	25	
delta-BHC	0.158	0.10		0.200		79.0	45-104	1.77	25	
4,4'-DDD	0.161	0.10	ч	0.200		80.4	54-117	3.14	25	
4,4'-DDE	0.161	0.10	41	0.200		80.4	46-112	0.358	25	
4,4'-DDT	0.216	0.10		0.200		108	57-124	3.47	25	
Dieldrin	0.164	0.10	ч	0.200		82.2	46-100	0.616	25	
Endosulfan I	0.155	0.10	.11	0.200		77.4	38-104	1.51	25	
Endosulfan II	0.166	0.10		0.200		83.1	54-110	4.60	25	
Endosulfan sulfate	0.195	0.10		0.200		97.6	64-112	4.99	25	
Endrin	0.175	0.10	ч	0.200		87.7	54-105	0.176	25	
Endrin aldehyde	0.183	0.10		0.200		91.6	56-104	4.72	25	
Endrin ketone	0.181	0.10	м.	0.200		90.5	61-106	5.42	25	
gamma-BHC	0.136	0.10	ч	0.200		67.9	26-94	1.77	25	
gamma-Chlordane	0.148	0.10	-	0.200		74.1	39-100	1.93	25	
Heptachlor	0.118	0.10		0.200		58.9	26-88	1.75	25	
Heptachlor epoxide	0.150	0.10	41	0.200		75.1	40-98	0.634	25	
Methoxychlor	0.239	0.10	-11	0.200		119	62-129	3.41	25	
Surrogate: Decachlorobiphenyl	0.237		"	0.250		95.0	10-202			
Surrogate: 2,4,5,6 Tetrachloro-m-xylene	0.0909		"	0.250		36.4	10-145			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Page 23 of 25

Padre Associates-Ventura 1861 Knoll Dr. Ventura CA, 93003	ibb Lease water Inta n Leighto	ake, Ventu	WO & R tura 04/20/20							
Poly	chlorinated B	iphenyl	s by G	C/ECD	- Quali	ty Conti	rol			
Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B9D0441 - EPA 8082 Preparation: EP	A 3510C 04/16/19	9 09:19								
Blank (B9D0441-BLK2)		A	nalyzed	04/16/19	23:19					
PCB-1016	ND	0.50	ug/1.							
PCB-1221	ND	0.50	11							
PCB-1232	ND	0.50	ч							
PCB-1242	ND	0.50								
PCB-1248	ND	0.50	ч							
PCB-1254	ND	0.50	м							
PCB-1260	ND	0.50	ч							
Surrogate: Decachlorobiphenyl	0.198		"	0.250		79.0	10-202			
Surrogate: 2,4,5,6 Tetrachloro-m-xylene	0.0586		"	0.250		23.4	10-145			
LCS (B9D0441-BS2)		A	nalyzed	04/16/19	22:19					
PCB-1016	1.19	0.50	ug/L	2.00		59.3	44-125			
PCB-1260	1.66	0.50	ч	2.00		82.8	49-131			
Surrogate: Decachlorobiphenyl	0.241		"	0.250		96.3	10-202			
Surrogate: 2,4,5,6 Tetrachloro-m-xylene	0.0823		"	0.250		32.9	10-145			
LCS Dup (B9D0441-BSD2)		A	nalyzed	04/16/19	22:39					
PCB-1016	1.26	0.50	ug/L	2.00		62.9	44-125	5.87	30	
PCB-1260	1.65	0.50		2.00		82.5	49-131	0.322	30	
Surrogate: Decachlorobiphenyl	0.231		n	0.250		92.5	10-202			
Surrogate: 2,4,5,6 Tetrachloro-m-xvlene	0.0854		"	0.250		34.1	10-145			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454

Client Connect: client.oec.com\reports www.oecusa.com TEL: (805) 922-4772 FAX: (805) 925-3376

Page 24 of 25

Padre Associates-Ventura	Project: Grubb Lease	WO & Reported:
1861 Knoll Dr.	Project Number: Seawater Intake, Ventura	1901882
Ventura CA, 93003	Project Manager: Jenn Leighton	04/20/2019 19:01

Notes and Definitions

- R-07 Reporting limits are at or below state/federal hazardous waste criteria limits.
 QR-04 The RPD exceeded the QC control limits.
 QR-02 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
 QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS and/or LCSD recovery and/or RPD values.
 LC50 State of CA limit for Non-Hazardous Designation: LC50 > 500 mg/L Pass Screen; <40% dcad in 750 mg/L (LC50 > 750 mg/L)
 - Pass Screen; <40% dead in 750 mg/L (1.C50 > 750 mg/L) Fail Screen: >40% dead in 750 mg/L (Definitive Recommended) Fail Screen [CA Haz]: >60% dead in 400 mg/L (LC50 < 400 mg/L)
 - HT-pH Water pH should be analyzed within 15 minutes of sampling. Soil pH should be analyzed as soon as possible.
 - >212 >212
 - _Pass Pass
 - RL Reporting Limit (Quantitation Limit)
 - ND Analyte NOT DETECTED at or above the reporting limit
 - RPD Relative Percent Difference

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

307 Roemer Way, Suite 300, Santa Maria, CA 93454	Client Connect:	client.oec.com\reports www.oecusa.com	TEL: (805) 922-4772 FAX: (805) 925-3376
			1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 -

Page 25 of 25

Oilfield Environmental & Compliance, Inc. 307 Roemer Way Suite 300, Santa Maria, CA 93454 Phone: (805) 922-4772 Fax: (805) 925-3376 www.oecusa.com						dkisso e: (66'		y, Taft -9143	CAS	93268		CHAIN OF CUSTO					
re Assa	ADC	tes	S, INC.	Project Name/#: GRUBB SCAWA						Ati	HER INTAKE						
KNOU			1	Site:	Ģ	GRN	BB	1	EA								
FNTURA.	CA.	9:	300.3 ZACHARY DRANSOFFECAC.CM	Analysis Requested							Special Instructions						
- 2220 JEIGHTen FAX- [] 10 Days- []	Fax: 80 PDF (std) 5 Days (st	5 (Å) Sample - 2 d)- 2	4.2050 E-mail: UEIGHTONPROPERTIES er: PATRICK CROCKS (PC) Colt/LUFT EDF- EDD- 3 Days- 1 Day- ASAP-	METHUS	Periody	Rc8	au ust		A.	Point	Savi	30(5m	Lense line	e s = +			
o Bac-T samples				1	HE I	2			Š.	HBS.	Ð.	4	E.	3 G. 3			
Date/Time Sampled	Matrix** (see key)	# of Cont.	Client Sample ID	B	B	3	32	Ha	20	Ê		Ē	3				
Hp-19 (0850	ຽຟ	10	GRUBB-SEA-041019	×	X	X	X	X	X	X	X	X	X				
					-		_		+	_	-						
			· · · · · · · · · · · · · · · · · · ·														
								_	-	_	-						
									_								
DEC DEC	FA		0 EC) Date: 4-10-19 Time: 1320	A = air / AQ = ao DW = d F = filte GW = g P = prov PW = p S = soli	/ vapor queous rinking v r round w duct / oi roduct w d / sedir	water vater I vater ment	P: 0:	20 0 2	000 00	9 i 6	77	<u> </u>		2 2 3	1.1		
	FATCURA - - 2220 FAX- 10 Days- 10 Days- 10 Bac-T samples Date/Time Sampled	ATURA CA 2220 Fax: 60 FAX- PDF (std) 10 Days- 5 Days (st amples received after 4:00 10 Bac-T samples will be ac Date/Time Matrix** Sampled (see key)	ANTURA CA - 9: - 22.20 Fax: 605 A ELGHTON Sample FAX- PDF (std)- 2 10 Days- 5 Days (std)- 2 amples received after 4:00PM will b Bac-T samples will be accepted Date/Time Matrix* # of Sampled (see key) Cont. 	PNTURA CA \cdot 93 ∞ 3 24CHARY DRANSCRFECULCOM (2220 Fax: \$05.4Å \cdot 2950 E-mail: UEIGHTAN@PADREINC.COM UEIGHTEN Sampler: PATRICK CROCKS (PC) FAX. PDF (std) \cdot 3 Days. 2 Days. 1 Day. ASAP. iamples received after 4:00PM will be considered as received the next business day. to Bac-T samples will be accepted after 12:00PM (noor) on Fridays. Date/Time Matrix** # of Sampled (see Key) Cont. Client Sample ID 10 - 19 / 0050 SU IO GRUBB-SEA - 04 10 19 Date: $4 \cdot 10 \cdot 19$ Time: 0330 Date: $4 \cdot 10 \cdot 19$ Time: 930 Date: Time:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ANTURA · CA · 9300 3 2ACHARY. DRANSCHFECK. CM · 2220 Fax: 805 iAA · 2050 E-mail: JLEIGHTANPADEINC CM S FAX- PDF (std) · A Colicit.UFTEDF- EDD- FAX- PDF (std) · A Sampler: PATKICK CRECKS (PC) S iamples received after 4:00PM will be considered as received the next business day. ASAP- IDay- ASAP- iamples received after 4:00PM will be considered as received the next business day. IDay- ASAP- IDay- Date(IIIm Matrix** # of Client Sample ID S S S Sampled (see key) Cont. Client Sample ID X X HD 19 (0850 StW IO GRUBB-SEA -041019 X X Date: Date: -041019 X Matrix Key* Date: -041019 X Matrix Key* Date: 4-10-19 Time: 930 Actaicous OBC FRIDOC Date: 4-10-19 Time: 1320 Matrix Key* A act. Date: 4-10-19 Time: 1320 We entitient Matrix Key* Date: 4-10-19 Time: 1650 S S S Date: Date: 4-10-19 Time: 1320	ANTURA · CA · 9300 3 ZACHARY. DRANSCRFECA. CM (* 22.20 Fax: 805 iAA · 2050 E-mail: UEIGHTAJ@PARENC.CM S VEIGHTEN sampler: PATRICK CROXCS (PC) FAX: PDF (std) · Z cold.UFTEDF ID Days- 5 Days (cd): M 3 Days 2 Days ID Days- 5 Days (cd): M 3 Days 1 Day ASAP ID Days- 5 Days (cd): M 3 Days 1 Day ASAP ID Days- 5 Days (cd): M 3 Days 1 Day ASAP ID Days- 0 Days (cd): M 3 Days 1 Day ASAP ID Days- 0 Days (cd): M 3 Days 1 Day ASAP Date/Time Matrix** # of Client Sample ID K K Date/Time Matrix Key**: A A X X ID 19 (0850 SW IO G RUBB-SEA -0.04 IO 19 X X X ID 19 (0850 SW IO G RUBB-SEA -0.04 IO 19 X X X ID 19 (0850 SW IO G RUBB-SEA -0.04 IO 19 X X X ID 10 (D RUBB-SEA -0.04 IO 19	Analyse Analyse 2220 Fax: 805 4A · 2050 E-mail: JLE (G Htal@RahkElNC.com So Bay ELGHTEN Sampler: PATKICK CRecks (Pc) FAX: POF (std) · E Colt/LUFT EDF- EDD- 10 Days- 5 Days (std) · M · Bayse: 2 Days- 1 Day- ASAP- amples received after 4:00PM will be considered as received the next business day. He is a manual in the isome i	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ANTURA · CA · 9.300 3. ZACHARY DRAISOFFECK. Construction Analysis Requested Special In 2220 Fax: 605 4AA · 2050 E-mail: JLEIGHTOL@PANKENC.Construction Special In Special In EIGHTON sample: PATRICK CROCKS (P2) Special In FAX. POF (edo) / B Coldular EDF-I EDD-I EDD-I IDDorpoil Stops (cb) · B 3Dap-I 2Dap-I IDp-III ASAP-I Sampler Matrix * and and anter 1200PM (non) on Fridays. BB 80 80 80 80 80 80 80 80 80 80 80 80 80		

CRC – Decommissioning of Grubb Lease Intake/Outfall Structure Hazardous Materials Management and Contingency Plan December 2019

SAMPLE TRANSPORT		RECEIPT, COND	Contraction of the second second		(*) Narration Comment Required Completed COC(s) Received With Samples	PROBL	See attached ROBLEM CHAIN				
Delivery (Other than OEC)		s Received Outside Ter		Correct Container(s)/Preserve for Analysis	~	ן. ינ ינ		for additional tration comments			
After-Hours Outside Drop-Off [Brought Inside]	1	ect from Field, on Ice			Container(s) Intact and in Good Condition		. •	(**) OE	(**) OEC Presty. ID		
Initials/Date/Time:	□ Arr	bient: Air or Filter Matri	ix .		Container Label(s) Consistent with COC		•	() DEC Please. ID			
Shipment Carrier:	🗆 Re	ceived Ambient, Placed	d on Ice for Transp	ont	OEC Preservation Added **		¢				
Tracking #	🗆 Sa	mple Temperature Acc	eptable for Analysi	s Requested	Sample Quantity Sufficient & Appropriate	VZ D	3 *				
CUSTODY SEALS None Present	Sample	s Received Outside Ter	mperature Range [Exception] *	VOA Containers Free of Headspace	K I	· □				
Cooler(s): C Present, Intact C Present, Not Intact C Nor	e 🛛 Ins	ufficient Ice or Unknow	n Cause		Tedlar Bag(s) Free of Condensation	-	1 × X				
Sample(s): Present, Intact D Present, Not Intact D Nor		ve Free Liquid in Samp	le Bags or Cooler				~				
CONTAINERS, COC CHANGES, AND/OR COP		T	CHECKS:						INITIALS (Narration Comments		
CONTAINER ID CONTAINER DESCRIP		PRESERVATIVE	Cl, S &/or pH	MATRIX	COMMENTS				Only)		
OLA IL Amber		HCI		W	8			×.,			
NB-E IL Amber				W							
AF II Paki				W							
	7	1/110		~~~							
ULA 250ML POL	4	HNU3	22	W							
DIH-U340mL UDA		HCI		W	3						
		1									
		+			· · · · · · · · · · · · · · · · · · ·						